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Abstract
Although the influences of El Niño–Southern Oscillation (ENSO) and boreal summer intraseasonal oscillation (ISO) on 
basin-wide tropical cyclone (TC) activity over the western North Pacific (WNP) have been widely recognized, how the 
seasonal and subseasonal anomalies of sea surface temperature and atmospheric ISO variations modulate different types of 
WNP TCs needed further examination, as addressed in this study. Using a fuzzy c-means clustering method, we objectively 
classified the WNP TCs into seven distinct clusters with different genesis locations and trajectories. The genesis numbers 
of all seven TC clusters revealed significant spectral variance at the intraseasonal timescale in the bands of 10–30 and 
30–90 days. Based on the diagnosis of scale-decomposed genesis potential index, we found that the increase in ISO-related 
mid-tropospheric moistening plays the most important role in TC genesis for all seven clusters, while anomalous circula-
tions (low-level vorticity and mid-level vertical motion) are secondary. The trajectories associated with straight-moving and 
recurving TC clusters are modulated by ISO-related steering flows. These modulations of TC activities by ISO vary with the 
phase of ENSO. The modulations of ISO are significantly greater for TCs generated in the southeast quadrant of the WNP 
in El Niño years than in La Niña years, while ISO imposes a larger impact on landfalling TCs occurring in La Niña years, 
which are changed by the low-level winds associated with ENSO conditions. The compound effects of ENSO and ISO on 
TC clusters provide useful sources of subseasonal TC predictability. Our statistical model using the information of ENSO 
and ISO shows skillful predictions of WNP TC genesis numbers and track distributions at the lead time up to 30 days.

Keywords Tropical cyclone · Intraseasonal oscillation · ENSO · Cluster analysis · Subseasonal prediction · Western North 
Pacific

1 Introduction

Tropical cyclones (TCs) are one of the costliest natural 
disasters affecting coastal regions over much of the world 
(e.g., Pielke et al. 2008; Smith and Katz 2013). Owing to 

its warm sea surface temperature (SST), abundant mois-
ture, and large-scale cyclonic circulation of the monsoon 
trough, the western North Pacific (WNP) is the region with 
the highest TC occurrence, accounting for 30% of the TCs 
over all ocean regions globally (e.g., Gray 1968; McBride 
1995). The activities of TCs over the WNP are strongly 
influenced by natural variabilities with different timescales. 
At the interannual timescale, the TC genesis location, num-
ber, track, and intensity are modulated by SST anomalies 
associated with the El Niño–Southern Oscillation (ENSO) 
(Chia and Ropelewski 2002; Wang and Chan 2002; Cama-
rgo et al. 2007a) and Pacific Meridional Mode (Zhang et al. 
2016a; Murakami et al. 2017). As the dominant mode of 
subseasonal variability, the phase evolution and intensity of 
boreal summer intraseasonal oscillation (ISO) also influence 
the activities of WNP TCs (Li and Zhou 2013a, b; Zhao 
et al. 2015). Increased (decreased) TC genesis numbers are 
observed during the active (inactive) phase of ISO when the 
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cyclonic anomaly, abundant moisture, small vertical wind 
shear, and deep convection provide a favorable environment 
for TC formation (Liebmann et al. 1994; Kim et al. 2008; 
Hsu et al. 2011; Li and Zhou 2013a; Zhao et al. 2015). By 
investigating the genesis potential index (GPI), Camargo 
et al. (2009) found the largest contribution to derive from 
the ISO relative humidity anomaly, followed by the low-level 
absolute vorticity (Zhao et al. 2015). The modulations by 
ISO on TC genesis numbers in different ENSO phases have 
also been discussed. Li et al. (2012) revealed an asymmetric 
modulation of TC genesis by the Madden–Julian Oscillation 
(MJO) under different ENSO conditions, with an enhanced 
MJO–TC relationship in El Niño years compared with La 
Niña years. Han et al. (2020) indicated that more TCs are 
generated over the WNP in active phases of the 10–30-day 
Quasi-Biweekly Oscillation (QBWO) in ENSO neutral years 
than in El Niño or La Niña years. Zhao et al. (2022) found 
that ENSO, and then either the MJO or QBWO, were the 
two most important predictors, after the climatology of TC 
genesis, over different sub-basins of the WNP, in their sta-
tistical intraseasonal TC forecast model.

The modulations of TCs by ENSO (along with other 
interannual SST anomalies) and ISO provide a physical 
basis for seasonal and subseasonal predictions of WNP 
TC activities (Gray et al. 1992, 1993, 1994; Klotzbach and 
Gray 2004, 2009; Klotzbach 2008; Leroy and Wheeler 2008; 
Vitart et al. 2010; Slade and Maloney 2013; Xiang et al. 
2015; Murakami et al. 2015; Nakano et al. 2017; Jiang et al. 
2018; Lee et al. 2018). Compared to seasonal TC predic-
tion systems, which are relatively well developed (Gray 
et al. 1992, 1993, 1994; Camargo and Barnston 2009; Kim 
et al. 2012; Murakami et al. 2015, 2016a, b), subseasonal 
TC prediction models are still in their infancy (Leroy and 
Wheeler 2008; Vitart et al. 2010; Slade and Maloney 2013; 
Nakano et al. 2017; Jiang et al. 2018; Lee et al. 2018). In 
early work, Leroy and Wheeler (2008) developed a logistic 
regression model to predict the weekly TC genesis probabil-
ity in the Southern Hemisphere based on the climatology of 
TC genesis numbers, the real-time multivariate MJO (RMM) 
index, and the two leading modes of the interannual SST 
variability associated with ENSO. Their statistical model 
showed an increased prediction skill, out to about the third 
week, by including MJO information, suggesting that ISO 
serves as an important source of TC genesis predictability at 
the subseasonal timescale. Following the work of Leroy and 
Wheeler (2008) and Slade and Maloney (2013) constructed a 
statistical model for intraseasonal TC genesis prediction over 
the Atlantic and eastern Pacific and indicated that a skill-
ful prediction could be achieved at lead times of 2–3 weeks 
when the MJO index was used in the model. Note, however, 
that the statistical models of Leroy and Wheeler (2008) and 
Slade and Maloney (2013) only provided predictions of 
whether or not a TC would occur over these ocean basins; 

they lacked information on the genesis numbers, genesis 
locations, and trajectories of TCs. Wei et al. (2021) con-
structed a similar spatiotemporal projection method (STPM) 
to that proposed by Hsu et al. (2015) to predict the principal 
components (PCs) of the MJO and QBWO. Then, they pre-
dicted the TC genesis over the South China Sea (SCS) based 
on the predicted PC and historical statistical relationship 
between the QBWO/MJO and TC daily genesis rate.

With improvements in high-resolution dynamic models 
in simulating ISO and its relationship with TCs (Jiang et al. 
2012; Satoh et al. 2012), it has become possible to predict 
the generation and movement of TCs at longer lead times 
of several weeks (Elsberry et al. 2010; Vitart et al. 2010; 
Nakano et al. 2017; Xiang et al. 2015; Jiang et al. 2018; Lee 
et al. 2018). For instance, Elsberry et al. (2010) and Vitart 
et al. (2010) showed that the European Centre for Medium-
Range Weather Forecasts (ECMWF) monthly forecast model 
can provide useful guidance for the TC genesis over the 
WNP and the Southern Hemisphere a few weeks in advance. 
Based on the high-resolution (50-km) coupled model of the 
National Oceanic and Atmospheric Administration/Geo-
physical Fluid Dynamics Laboratory (NOAA/GFDL), Xiang 
et al. (2015) reported that the genesis of Hurricane Sandy in 
the Atlantic in 2012, and Super Typhoon Haiyan in the west-
ern Pacific in 2013, could be correctly predicted with a lead 
time of about 11 days. Jiang et al. (2018) then extended the 
study of Xiang et al. (2015) by assessing the prediction skill 
of the GFDL forecast system for all 600 + TCs that occurred 
during 2003–2013. They found that only about 10% of the 
TCs were correctly predicted at a 1-week lead, indicating 
that subseasonal TC prediction is still a challenge for state-
of-the-art high-resolution coupled models. A similar conclu-
sion was obtained by Lee et al. (2018), who evaluated the TC 
genesis prediction skill of six subseasonal-to-seasonal (S2S) 
models and found that the ECMWF S2S model performed 
best, with skillful predictions for TC genesis numbers in 
the Atlantic and WNP in the week 2 (days 8–14) forecast. 
The other S2S models displayed limited skill at a 1-week 
lead. The prediction skill for probabilistic TC occurrence 
at a regional scale (15° latitude × 20° longitude) over dif-
ferent basins was assessed by Gregory et al. (2019) and Lee 
et al. (2018), who both concluded that the ECMWF model 
shows the best skill, out to 3–4 weeks in advance. Qian et al. 
(2020) introduced a novel dynamical–statistical model for 
subseasonal TC forecasting over the WNP, with a 25-day 
lead time, which considers different TC clusters with distinct 
genesis locations and trajectories. Additional progress in the 
mechanisms of subseasonal variability and other operational 
TC prediction systems can be found in the review paper by 
Camargo et al. (2019).

In summary, the overall skill revealed by the operational 
systems is still limited (at around 2 weeks), which is because 
the modulation by ISO of TC subseasonal variabilities is 
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not yet fully understood, especially regarding the compound 
impacts of ISO and ENSO on different kinds of TCs over the 
WNP. This suggests a need to further explore efficient and 
useful approaches to subseasonal TC prediction. Accord-
ingly, in this study, we investigated in greater detail the 
modulating effects of ISO and ENSO on different types of 
WNP TCs, which had been previously objectively catego-
rized by clustering analysis (Camargo et al. 2007a, b; Chu 
et al. 2010; Kim et al. 2011; Zhang et al. 2016b; Zhao et al. 
2018). In this previous work, Camargo et al. (2007a) briefly 
demonstrated the connection between the MJO phases and 
ENSO and each of the TC clusters. However, the detailed 
processes through which ISO influences distinct TC clusters, 
such as the relative contributions of ISO-related dynamic 
and thermodynamic effects on different TC clusters, have 
not been elucidated. Besides, with the impact of the different 
phases of ENSO evolution, the different modulations of ISO 
on different TC clusters should also be investigated. Stud-
ies have thus far mostly focused on the subseasonal predic-
tion of TC genesis numbers, but probabilistic information 
concerning TC genesis locations and track patterns over the 
entire WNP would also be useful for risk management and 
policymakers. Based on results regarding the modulations 
by ISO and ENSO on individual TC clusters, we constructed 
statistical models by using the key ISO-related environmen-
tal factors in different ENSO phases as potential predictors 
of the genesis numbers of each TC cluster at the lead times 
of 10–40 days. Then, we obtained probability maps of TC 
frequency (TCF) by considering both the genesis number 
and climatological probability of TCF for individual clusters 
(Chu et al. 2010; Kim et al. 2011).

The rest of the paper is organized as follows: in Sect. 2, 
we describe the methods and data used in our study. The 
modulating effects of ISO on distinct TC clusters, including 
their genesis and trajectory patterns, as well as the different 
impacts of ISO on distinct TC clusters under ENSO-related 
large-scale fields, are examined in Sect. 3. In Sect. 4, we 
present the procedures of WNP TC prediction at 10–40-day 
leads, along with the forecast results. Conclusions and some 
further discussions are provided in Sect. 5.

2  Data and methods

2.1  Data

1. TC dataset
  The TC genesis and track data over the WNP (0°–

60° N, 100° E–180°) are from the Reginal Specialized 
Meteorological Centers Tokyo-Typhoon Center best-
track dataset, as archived in the International Best Track 
Archive for Climate Stewardship (Knapp et al. 2010). 
We focus on tropical storms or stronger cyclones (sus-

tained wind speed ≥ 34 knots), collectively referred to as 
TCs in this study.

2. Large-scale field datasets
  The GPI was calculated using the large-scale fields 

obtained from the ERA-Interim dataset (Dee et  al. 
2011), which has a 1.5° × 1.5° (latitude × longitude) 
resolution. The variables used include 3-D zonal and 
meridional wind fields, vertical velocity, relative humid-
ity, temperature, and geopotential height. The SST data 
are from the NOAA High-resolution Blended Analysis 
of daily SST at a 0.25° × 0.25° (latitude × longitude) 
resolution (Reynolds et al. 2007). All the large-scale 
fields were interpolated into a uniform resolution of 
1.5° × 1.5° (latitude × longitude). We used daily outgoing 
longwave radiation (OLR) data at a horizontal resolution 
of 2.5° × 2.5° (latitude × longitude) from the polar-orbit-
ing satellites of the National Oceanic and Atmospheric 
Administration (Liebmann and Smith 1996) to identify 
deep convection activity. The study period covers the 
WNP TC season (June–November) during 1982–2018.

3. Definition of ENSO state
  Considering sufficient sample sizes and distinct sepa-

ration of ENSO phases, the El Niño (La Niña) years are 
defined as when the seasonal mean (June–November) 
Niño-3.4 (5° S–5° N, 170°–120° W) SST anomaly is 
greater than 0.8σ (less than − 0.8σ), based on the NOAA 
High-resolution Blended Analysis of daily SST. Accord-
ing to this definition, six El Niño years (1982, 1987, 
1997, 2002, 2009, 2015) and ten La Niña years (1984, 
1985, 1988, 1989, 1998, 1999, 2000, 2007, 2010, 2011) 
are defined. The remaining 21 years are neutral years. 
Our sensitivity test shows that the major results are not 
sensitive to the thresholds selected.

  The forecast Niño-3.4 index [area-averaged SST over 
(5° S–5° N, 170°–120° W)] is used as the product of the 
North American Multi-Model Ensemble (NMME) fore-
casting project (Kirtman et al. 2014). Six models provide 
real-time Niño-3.4 index datasets, while only four mod-
els provide early predictions from 1982. Therefore, we 
utilized the 1-month lead real-time Niño-3.4 index prod-
ucts provided by these four models, including CanCM4i, 
CFSv2, NASA_GEOS5v2, and NCAR_CCSM4. The 
forecast El Niño (La Niña) phases are defined as when 
the real-time seasonal mean (June–November) Niño-3.4 
index is greater than 0.8σ (less than − 0.8σ) at a lead time 
of 1 month.

2.2  Methods

1. Fuzzy c-means clustering analysis
  To objectively classify the WNP TC clusters (or track 

patterns), we used the fuzzy c-means clustering method 
(Bezdek 1981), which is based on minimizing an objec-
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tive function of the c-means function. The mathemat-
ics of the c-means function can be found in Chu et al. 
(2010) and Kim et al. (2011), which highlight the supe-
riority of the c-means clustering method in analyzing 
clusters with ambiguous boundaries, like TC data.

  According to the results of previous studies (Camargo 
et al. 2007a, b; Chu et al. 2010; Kim et al. 2011; Zhang 
et al. 2016b), WNP TCs can be suitably classified into 
seven clusters, denoted by C1–C7, respectively. Figure 1 
and Table 1 display their basic features, including their 

genesis and center locations of trajectories, lifespans, 
trajectory lengths, maximum wind speeds, and accumu-
lated cyclone energy (ACE; Bell et al. 2000). “TCall” 
represents all TC cases over the WNP basin. Briefly, 
C1 is characterized by TCs that generate and develop 
over the SCS and might strike southern China and the 
Indochina Peninsula (Fig. 1a). The TCs of C1 have 
the shortest lifespan (2.7 days) and trajectory length 
(1037.8 km), as well as the lowest maximum wind speed 
(64.3 m  s−1) and ACE (9078  m2  s−2), among the seven 

Fig. 1  a–g Seven TC clusters 
(C1–C7) derived from the fuzzy 
c-means clustering method 
using h all WNP TC cases 
(TCall) during the TC season of 
1982–2018. The red curve rep-
resents the central trajectory of 
TCs. The number and percent-
age of TCs for each cluster are 
listed in parentheses.
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clusters, owing to the limited basin size of the SCS and 
the short distance to land. The TCs of C2 have the east-
most (162.4° E) and northmost (27.0° N) genesis loca-
tions, which form and propagate over the open ocean 
of the WNP without making landfall (Fig. 1b). C3 is 
another cluster with most TCs being active in the open 
ocean; however, the TCs of C3 are generated more to the 
south and west than those of C2 and have longer lifes-
pans (Fig. 1c, Table 1). C4 is characterized by TCs mov-
ing northwestward and turning northeastward, which 
affects southeastern Japan (Fig. 1d). The TCs of C5, 
with straightforward and west/northwest-oriented trajec-
tories, mostly strike Taiwan and East China (Fig. 1e). C6 
is a cluster of TCs that form in the southeastern part of 
the WNP and has the longest lifespan and largest ACE 
(Table 1). Finally, the TCs of C7 are generated to the 
east of the Philippines and easily make landfall in South 
Korea and Japan.

2. Definitions of ISO activity
  The boreal summer ISO consists of two different 

modes, with periods of 10–30 and 30–90 days. To sepa-
rate the high-frequency (HF; period of 10–30 days) and 
low-frequency (LF; period of 30–90 days) ISO compo-
nents, the Lanczos band-pass filter (Duchon 1979) was 
applied to the time series of OLR at each grid cell to 
extract the HF and LF components of intraseasonal vari-
ability. The dominant patterns of the HF/LF ISO modes 
over the WNP were further identified by using empirical 
orthogonal function (EOF) analysis of band-pass-filtered 
OLR over the WNP (0°–60° N, 100° E–180°) during 
June–November of 1982–2018. The first two leading 
modes of HF (LF) variability explain 7.4% (16.6%) and 
5.9% (11.1%) variances, respectively. They are both 
statistically significant according to the North’s rule of 
thumb (North et al. 1982). Based on the lead-lag cor-
relation coefficients between the first two PCs for June–
November from 1982 to 2018, we find that the first mode 
of HF (LF) variability tends to lead the second mode by 

about 4 (10) days, with a significant correlation coef-
ficient of 0.50 (0.48), indicating that the two leading 
modes occur in conjunction as a pair. The amplitude and 
phase of the HF/LF ISO activities were then defined by 
the first two leading PCs (PC1 and PC2). An active LF/
HF ISO day was selected when the amplitude of the HF/
LF ISO [(PC12 +  PC22)1/2] was greater than or equal to 
1.

3. Scale-decomposed GPI

To quantitatively identify key factors associated with the 
ISO in modulating TC activity over the WNP, we examined 
the GPI (IGPI) at the intraseasonal timescale over the TC 
genesis region based solely on the days with TC genera-
tions for each TC cluster. A modified GPI that incorporates 
the vertical motion effect proposed by Murakami and Wang 
(2010) was used in this study:

where ζ is the 850-hPa absolute vorticity  (s−1), IRH is the 
relative humidity (%) at 600 hPa, Vpot is the TC maximum 
potential intensity (MPI; m  s−1; Emanuel 1995), Vs is the 
vertical wind shear (m  s−1) between 850 and 200 hPa, and 
ω is the vertical pressure velocity (Pa  s−1) at 500 hPa. Vpot 
was defined by Emanuel (1995) and modified by Bister and 
Emanuel (1998) as follows:

where Ck is the exchange coefficient for enthalpy, CD is the 
drag coefficient, Ts is SST (K), and T0 is the mean outflow 
temperature (K). The quantity  CAPE* is the value of the 
convective available potential energy (CAPE) with reference 
to the surrounding environment, and  CAPEb is that of the 
boundary layer air.
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Table 1  Basic characteristics of 
clusters C1–C7 and all TC cases 
(TCall)

TC trajectory length is measured from its formation (TC sustained wind speed exceeds 17 m   s−1 for the 
first time) to dissipation (TC sustained wind speed reduces to below 17 m  s−1)

Genesis location (lon, lat) Lifespan (days) Trajectory 
length (km)

Maximum 
wind speed 
(m  s−1)

Accumulated cyclone 
energy (ACE) 
 (m2  s−2)

C1 113.2° E, 16.9° N 2.7 1037.8 64.3 9078
C2 162.4° E, 27.0° N 4.0 2284.2 74.6 19,958
C3 150.3° E, 17.7° N 6.4 3064.2 82.3 57,438
C4 145.8° E, 26.4° N 5.9 3297.0 82.3 34,991
C5 123.1° E, 18.3° N 4.9 2119.4 87.5 27,683
C6 136.8° E, 17.7° N 7.5 3734.2 87.5 63,761
C7 132.2° E, 24.0° N 5.7 2896.6 79.7 37,486
TCall 133.4° E, 21.5° N 5.1 2466.7 87.5 31,102
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For convenience, Eq. (1) is represented by the following 
five terms:

where η denotes the GPI component associated with 850-
hPa absolute vorticity; γ denotes the GPI term related to rela-
tive humidity at 600 hPa; ψ represents the GPI component of 
potential intensity; and s and w represent the GPI terms of 
vertical wind shear and vertical motion, respectively.

To examine the relative effects of the climatological sea-
sonal cycle and subseasonal perturbations (mainly ISO) on 
the five large-scale factors of the GPI, the intraseasonal com-
ponents of GPI variables are defined as follows:

Here, a prime indicates the intraseasonal timescale 
(10–90 days) component, which was subjected to 10–90-
day band-pass filtering (Duchon 1979), and an overbar 
represents the daily climatological mean of factors of the 
GPI. Thus, the changes in the GPI induced by ISO-related 
processes and by ISO interaction with the seasonal cycle 
can be represented by the sum of the five linear terms (with 
only one perturbation process) and nonlinear effects (with 
the involvement of two or more perturbation processes, such 
as �′ ⋅ � ′ ⋅ � ⋅ s ⋅ w , �′ ⋅ � ′ ⋅ � ′

⋅ s ⋅ w , …, �′ ⋅ � ′ ⋅ � ′
⋅ s′ ⋅ w′ ), 

represented by NL in Eq. (4). The scale-decomposed GPI 
equation has been used to discuss the effects of ISO on 
basin-total TC genesis over the eastern Pacific (Jiang et al. 
2012) and WNP (Zhao et al. 2015). In this study, we applied 
this diagnostic method to each of the WNP TC clusters to 
reveal their formation mechanisms.

3  ISO modulations of seven TC clusters

3.1  Climatological conditions

Figure 2 presents a spectral analysis of the genesis num-
bers of each TC cluster, as well as all TC cases, over the 
WNP. Considering that the TC genesis is not a continuous 
time series and contains several zero values, we utilized 
the discrete spectrum analysis (Stoica and Moses 2005) 
to analyze the time series of TC genesis numbers in each 
summer separately and then displayed their climatological-
mean results (Fig. 2). Note that the spectral analysis was not 
applied to the years without TC geneses (a time series of 
zero). The results show that, in addition to the synoptic-scale 
(< 10 days) variability, significant spectral powers associated 
with the HF and LF intraseasonal variability are seen in the 
genesis numbers of each cluster. HF and LF ISO correspond 

(3)IGPI = � ⋅ � ⋅ � ⋅ s ⋅ w,

(4)I
�
GPI

=
(
� + ��

)
⋅

(
� + � �

)
⋅

(
� + � �

)
⋅

(
s + s

�
)
⋅

(
w + w

�
)
− � ⋅ � ⋅ � ⋅ s ⋅ w

= �� ⋅ � ⋅ � ⋅ s ⋅ w + � ⋅ � � ⋅ � ⋅ s ⋅ w + � ⋅ � ⋅ � �
⋅ s ⋅ w + � ⋅ � ⋅ � ⋅ s

�
⋅ w + � ⋅ � ⋅ � ⋅ s ⋅ w

� + NL.

to two dominant ISO modes over the Asia monsoon region. 
HF ISO is also known as the quasi-biweekly oscillation 
(QBWO; Keshavamurty 1971, 1972), with a periodicity of 
10–30 days, propagating northwestward from the tropics. LF 
ISO is characterized by a periodicity of 30–90 days (Mad-
den and Julian 1971, 1972) and propagating northeastward. 
This suggests that TC generations in different locations (in 
the southeastern part of the WNP for C2–C4 and C6, or near 
the Philippine Sea for C5 and C7, or within the SCS for C1) 
are influenced by both HF and LF ISOs.

To confirm the phase relationship between ISO and TC 
genesis for individual clusters, Figs. 3 and 4 compare the 
preferred phases of HF and LF ISOs for TC formation. The 

evolutions of anomalous convection and circulation associ-
ated with HF ISO are displayed in the upper panels of Fig. 3. 
The convective and low-pressure anomalies are initiated 
over the western tropical Pacific Ocean in phase 1 (Fig. 3a) 
and move northwestward towards the eastern Philippine 
Sea during phases 2–3 (Fig. 3b–c). Then, the convection 
and low-pressure anomalies become stronger and prevail 
over the Philippine Sea and SCS in phases 4–5 (Fig. 3d–e), 
but they weaken after moving into Southeast China during 
phases 6–8 (Fig. 3f–h). Meanwhile, suppressed convection 
accompanied by a high-pressure anomaly appears from the 
western tropical Pacific and moves northwestward toward 
the SCS (Fig. 3e–h). The statistics of all the WNP TC cases 
(Fig. 3p) show that about 64% (36%) of all TCs form during 
periods when the convective (suppressed) anomalies of HF 
ISO propagate from the western equatorial Pacific towards 
the SCS during phases 2–5 (6–8 and 1). The contrast in TC 
genesis numbers between active and inactive phases of HF 
ISO has been documented previously in Gao and Li (2011), 
Li and Zhou (2013a), and Zhao et al. (2015). When look-
ing into the phase relationship between HF ISO and the TC 
genesis numbers of each cluster (Fig. 3i–o), we find that the 
most favorable (unfavorable) phase for TC genesis varies by 
cluster type. For example, the TCs of C1 generate the most 
(least) in phase 4 (phases 8 and 1) when the convective (sup-
pressed) OLR anomalies maximize over the SCS (Fig. 3i). 
The active convection and low-pressure anomalies extending 
from the SCS to the Philippine Sea in phases 4–5 also favor 
the TC formations of C5 (Fig. 3m) and C7 (Fig. 3o). In con-
trast, the TCs of C4 and C6 tend to generate more frequently 
in phase 2 (Fig. 3l, and n) when HF ISO convection and 
low-pressure anomalies are located over the southeastern 
part of the WNP (Fig. 3b).

Figure 3 indicates that the main genesis locations for 
the different TC clusters vary according to the convection 
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and low-pressure anomalies associated with HF ISO. This 
is also apparent in the phase relationship between LF ISO 
and the TC genesis numbers of individual clusters (Fig. 4). 
The zonally elongated OLR and geopotential height anom-
alies in phase 1 (Fig. 4a) and phase 8 (Fig. 4h) provide 
favorable conditions for the generation and propagation of 
the straight-moving clusters C5 and C6, while the opposite 
conditions appear in phase 5 (Fig. 4m, n). For the TCs 

of C3 and C6, i.e., TCs that generate in the southeastern 
part of the WNP, larger (smaller) numbers of TCs form in 
phase 1 (phases 4 and 5) when negative (positive) OLR 
anomalies show a southeastward extension. By comparing 
the TC genesis numbers against the MJO phase, Camargo 
et al. (2009) pointed out that the peak genesis numbers 
for most of the clusters appear in phases 5 and 6 of the 
MJO (based on the RMM index) as the MJO convection 

Fig. 2  Discrete spectral analysis 
of daily TC counts of a–g 
individual clusters and h all TC 
cases over the WNP during the 
TC seasons of 1982–2018 (unit: 
 day−2). The dashed red and blue 
line represents the significance 
test of red noise and its 95% 
confidence level. Red (blue) 
shading in the lower part of 
each panel represents the ratio 
between the spectral power and 
its red noise when the former is 
larger (smaller) than the latter, 
highlighting the significant 
(non-significant) signals. The 
spectral analysis was applied to 
the TC time series each summer 
respectively and then performed 
their climatological mean.
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prevails in the tropical WNP, corresponding to phase 1 in 
this study.

To understand the modulating effects of ISO large-scale 
parameters on TC genesis for these distinct clusters, we 
diagnosed the scale-decomposed GPI (Eq. (4)). Before com-
paring the contribution of each term to the total GPI, it was 
necessary to address whether the anomalous GPI can capture 
the TC genesis for each cluster. Figure 5 shows the compos-
ites of HF (10–30-day) and LF (30–90-day) GPI anomalies 
based on the TC genesis days for each cluster. Both the HF 

and LF GPI anomalies reasonably represent the main gen-
esis regions of individual clusters (Fig. 5a–h, i–p). Notably, 
the HF GPI anomalies have a larger amplitude than the LF 
GPI for C1, C4, and C6, suggesting a larger contribution 
of HF ISO to these clusters as shown in the spectral analy-
sis (Fig. 2a, d, f). Even with a smaller amplitude, the GPI 
anomalies induced by LF ISO capture well the distinct gen-
esis locations for different clusters (Fig. 5i–p). In the analy-
sis of the phase relationship between HF/LH ISO and TC 
genesis (Figs. 3, 4), we also find that the TCs tend to form 

Fig. 3  a–h Composites of 10–30-day OLR (shading; W  m−2) and 
500-hPa geopotential height (contours; interval: 2 gpm) anomalies in 
the eight phases of active HF ISO [(PC12+PC22)1/2≥1]. TC genesis 
(red dots) of i–o C1–C7 and p TCall during each phase of HF ISO 
phase indices. The probability of TC genesis in each phase [exclud-
ing the days of weak ISO phase,  (PC12+PC22)1/2<1] is shown in 
blue, where the dark blue number indicates the change in TC genesis 
counts is statistically significant at the 95% confidence level using 
the Monte Carlo method. For each TC cluster, each TC genesis date 

corresponding to active ISO states (i.e., a specific ISO phase among 
phases 1–8) is assigned to a random ISO phase, and the probabili-
ties of TC genesis in each phase were then calculated as one simu-
lation. This simulation is repeated a large number of times (1000) 
to obtain 1000 simulated TC genesis probabilities in each phase. If 
the observed probability of TC genesis occurrence for a certain ISO 
phase is larger (smaller) than the 97.5% (2.5%) percentile of the ran-
dom distribution generated by 1000 simulations, it is considered sta-
tistically significant
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in the locations with enhanced ISO convection, regardless 
of 10–30-day or 30–90-day convective signals. For the sake 
of simplicity, we consider the effects of both ISO modes 
on the 10–90-day GPI anomalies (Fig. 5q–x). The TCs of 
various clusters tend to form within the maximum center of 
10–90-day GPI anomalies. In other words, the 10–90-day 
GPI anomalies induced by the combined effect of HF and 
LF ISO activities could represent the potential of TC genesis 
for different clusters.

To identify the key processes (dynamic and/or thermody-
namic effects) associated with the ISO contributing to the 
TC genesis of different clusters, we diagnosed and decom-
posed the GPI for each cluster (Fig. 6). Each term in Eq. (4) 
was calculated using a 6° × 6° (latitude × longitude) box cen-
tered at each TC genesis location. For all the TC clusters, the 

relative humidity [ � � =
(

IRH

50

)3

 ] associated with the ISO 

plays the leading role in contributing to the 10–90-day GPI 
anomaly. The low-level absolute vorticity anomaly of the 
ISO [ �� = ||10

5� ||
3∕2 ] is the secondary contributor, followed 

by the effect of ISO-related vertical motion [ w� =
(

−�+0.1

0.1

)
 ]. 

The nonlinear effect of ISO–ISO interaction also exerts non-
negligible influences on the ISO GPI anomaly, indicating 
that synoptic-scale activity also feeds back to the ISO (Hsu 
et al. 2011). In contrast, the effects of ISO-induced potential 
intensity and vertical wind shear anomalies are relatively 
small. The results are generally consistent with those of 
Camargo et al. (2009) and Zhao et al. (2015), who suggested 
that mid-level relative humidity and low-level absolute vor-
ticity are the two most important factors affecting WNP TC 
genesis. Note that the results are not sensitive to the size 
(3° × 3° or 9° × 9°) of the box used for computing the GPI 
terms.

Fig. 4  As in Fig. 3 except for the phase evolution of LF ISO and its association with TC genesis for individual clusters
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In addition to the influences on TC genesis, the ISO 
activities may modulate the TC trajectory by changing the 
background steering flow (Kim et al. 2008; Chen et al. 2009; 
Li and Zhou 2013b). Figure 7 shows the ISO-related anoma-
lous steering flows (red vectors) in the four days after TC 
genesis for each cluster. A contrast between straight-moving 
TCs (C1, C5, and C6) and recurving TCs (C4 and C7) lies 
in the locations of ISO-related steering flow that regulates 
the relative intensity and locations of the monsoon trough 
and subtropical high. Regarding the TCs of C1, the cyclonic 
steering flow associated with the ISO is confined to the SCS. 
Concurrently, the WNP subtropical high tends to strengthen 
and extend westward. The enhanced anomalous southeast-
erly causes the TCs of C1 to move northwestward (Fig. 7a). 
A similar condition of a westward extension of the subtropi-
cal high together with a weakening of the monsoon trough 

can be observed during the TC developing stages of C5 
(Fig. 7e) and C6 (Fig. 7f). On the contrary, a northeastward 
extension of an enhanced monsoon trough accompanied by 
weakening trade winds appears after the formation of C4 
and C7 TCs (Fig. 7d, g), favoring the northward movement 
of TCs towards Korea and Japan.

3.2  Compound effects of ISO and ENSO on TCs

The impacts of ENSO on TC activity over the WNP have 
been investigated and identified as one of the most domi-
nant modes modulating TC activities at interannual time-
scales (Wang and Chan 2002; Camargo and Sobel 2005). 
Nevertheless, the modulations by HF and LF ISOs of the 
different clusters of TC activities under the various back-
grounds of ENSO phases still require further discussion. 

Fig. 5  Composites of HF (10–30-day filtered) GPI anomalies based 
on TC generation days for (a–g) C1–C7 and h TCall during the TC 
seasons of 1982–2018. i–p and q–x are the same as a–h except for 

the LF (30–90-day filtered) and 10–90-day filtered GPI anomalies. 
Blue dots mark the TC genesis locations
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To assess the modulations of HF/LF ISOs on TC genesis 
numbers under different ENSO conditions, we calculated 
the daily TC genesis percentage (TCGP) in each HF/LF 
ISO phase under different ENSO conditions. The TCGP 
is defined as the ratio of the TC genesis number relative to 
the number of days for a particular HF/LF ISO phase. As 
demonstrated in Fig. 8, the TCGPs of the TCs that gener-
ate in the southeast quadrant of the WNP, such as those 

of C3, C4, and C6 (Fig. 8c, d, f), indicate greater activity 
in El Niño years (0.9% TCGP for C3, 2.3% TCGP for C4, 
and 1.8% TCGP for C6) compared to La Niña years (0.0% 
TCGP for C3, 1.6% TCGP for C4, and 0.4% for C6). Few 
TCs of C3 and C6 are generated in La Niña years. Con-
versely, more landfalling TCs are generated in the western 
WNP during La Niña years, such as the TCs of C5 (3.0% 
TCGP in La Niña years and 2.0% TCGP in El Niño years) 

Fig. 6  Contributions of differ-
ent terms (IGPI, η, γ, ψ, s, ω) to 
10–90-day GPI anomalies for 
a–g the TCs of seven clusters 
and h all TCs. These terms are 
composited over a 6° × 6° box 
centered at the genesis loca-
tions of TCs during the days 
of TC genesis. Black (grey) 
bars denote positive (negative) 
contributions
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and C7 (2.5% TCGP in La Niña years and 1.8% TCGP in 
El Niño years).

The different modulations of LF/HF ISOs on the seven 
TC clusters as well as all TCs over the WNP under El Niño 
(red bars) and La Niña (blue bars) conditions are shown in 
Figs. 8a–h/9a–h, respectively. For all TCs over the WNP, 
the strength of the active convection (depressed convec-
tion) over the southeast quadrant of the WNP in phases 1 
and 8 (phases 4–5) of the LF ISO is strengthened (offset) 
by the westerly wind anomalies associated with El Niño 
conditions (Fig. 8i, k), while it is offset (strengthened) by 

the easterly wind anomalies over the southeast quadrant of 
the WNP with La Niña conditions (Fig. 8m, o). Therefore, 
a southeast (northwest) shift of positive TCGP anoma-
lies occurs in phases 1 and 8 of El Niño (La Niña) years 
(Fig. 8i, m) compared to climatological phases 1 and 8 
(Fig. 8q). In contrast, the LF ISO-related convection over 
the WNP in phases 2–3 is essentially strengthened by the 
enhanced monsoon trough associated with La Niña condi-
tions (Fig. 8n) compared to El Niño years (Fig. 8i), thus 
resulting in a larger TCGP in phases 2–3 during La Niña 
years (Fig. 8h).

Fig. 7  Composites of 10–90-
day filtered steering flow (red 
vectors; unit: m  s−1), total 
(non-filtered) steering flow 
(light blue streamlines), and the 
5880-gpm contour (thick blue 
contour) based on TC genesis 
days and the next four days for 
a–g C1–C7. The steering flow 
in h represents the climatolog-
ical-mean field during the TC 
seasons of 1982–2018. Steering 
flow is defined as the pressure-
weighted vertically averaged 
horizontal winds between 
850 and 200 hPa. Only the 
anomalous field exceeding the 
95% significance level is shown 
for the ISO-related steering 
flow (red vectors). Black curves 
mark the TC trajectories of a–g 
C1–C7 and h TCall
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Fig. 8  TC genesis percentage (TCGP) anomalies (units: %) of a–g 
C1–C7 and h TCall in each phase of LF ISO in El Niño years (red 
bars) and La Niña years (blue bars) during 1982–2018. The TCGP of 
C1–C7 and TCall in El Niño (numbers in red) and La Niña (numbers 
in blue) years are displayed in the right-top corner of the subplots. i–k 
Composite TCGP (shading; units: %) anomalies and 30–90-day band-
passed OLR anomalies (contours from −20 W  m−2 to 20 W  m−2 with 
an interval of 8 W  m−2, positive and negative values are in red and 
blue contours, respectively) in i, m, q phases 1 and 8, j, n, r phases 
2–3, k, o, s phases 4–5, and l, p, t phases 6–7 of LF ISO during i–l El 

Niño, m–p La Niña, and q–t all years. The green vectors in i–t rep-
resent the climatological wind at 850 hPa composited in i–l El Niño 
years, m–p La Niña years, and q–t all years during 1982–2018. Only 
the regions with significant changes at the 95% confidence level are 
shown. TCGP anomalies are defined as the percentage of TC genesis 
count divided by the number of days for each phase of LF ISO and 
El Niño (La Niña) years compared with the climatological mean for 
each 5° × 5° grid box. The number of days for each phase of LF ISO 
and El Niño (La Niña) years is listed in parentheses
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The HF ISO and ENSO also impact TC activities by 
changing the low-level winds associated with El Niño and 
La Niña years. The convections in the southeast quad-
rant of the WNP associated with phases 2–3 of HF ISO 
are enhanced (offset) by the westerly (easterly) anomalies 

associated with El Niño (La Niña) conditions (Fig. 9j, n). 
Furthermore, the modulation of ISO has different impacts 
on different TC clusters in El Niño and La Niña years. For 
the TCs of C3 and C6 generated in the southeast quadrant of 
the WNP, the TC genesis number anomalies of these clusters 

Fig. 9  As in Fig. 8 except for TC count anomalies and large-scale fields in each phase of HF ISO
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are negative in almost all phases of LF (blue bars in Fig. 8c, 
d, f) and HF (blue bars in Fig. 9c, d, f) ISO during La Niña 
years, indicating a weaker modulation of ISO in La Niña 
years for these two clusters compared with those in El Niño 
years. Strong easterly (westerly) anomalies over the tropical 
WNP associated with La Niña (El Niño) conditions suppress 
(enhance) the TC genesis numbers in the southeast quadrant 
of the WNP. In contrast, the TC genesis number anomalies 
of landfalling TCs, such as the TCs of C5 and C7, are nega-
tive in most phases (at least six out of eight phases) of LF 
(Fig. 8e, g) and HF (Fig. 9e, g) ISO during El Niño years, 
which results from the southeasterly steering flow of land-
falling TCs being offset by the westerly anomalies associated 
with El Niño conditions. Moreover, the composite results in 
Figs. 8 and 9 are not sensitive to the threshold of Niño-3.4 
SST anomaly (0.8σ) used. For example, the larger threshold 
of 1.0σ and smaller threshold of 0.7σ are nearly identical 
(not shown).

In summary, we have examined the influences of ISO on 
the activities of individual TC clusters in this section. Our 
findings indicate that the location of TC genesis varies with 
the convective and low-pressure anomalies of both the HF 
and LF ISO modes. We have identified mid-tropospheric 
moistening and low-level cyclonic vorticity associated with 
ISO as being the leading contributors to TC genesis for all 
seven clusters. While El Niño and La Niña have similar 
impacts on TC genesis in most phases of LF and HF ISO, the 
modulation of LF and HF ISOs in some specific phases is 
still changed by the low-level winds associated with ENSO 
conditions. Additionally, we observed relatively weaker 
modulations of HF and LF ISOs on the TCs generated in the 
southeast quadrant of the WNP (landfalling TCs), such as 
the TCs of C3, C4, and C6 (C5 and C7), during La Niña (El 
Niño) years compared with those in El Niño (La Niña) years. 
These observations provide a physical basis for predicting 
the TC genesis numbers of each cluster using ISO-related 
fields as predictors. Given that each TC cluster has a distinct 
genesis location and trajectory, once the genesis numbers 
of individual clusters are predicted, the probability of TCF 
over the entire WNP basin can be obtained by integrating 
the track patterns for all clusters. Next, we provide a detailed 
description of the statistical prediction model and assess the 
WNP TC prediction skill at the subseasonal timescale.

4  Application to subseasonal TC prediction

4.1  Construction of statistical model

The modulation by ISO and ENSO of the TC genesis of each 
cluster (Figs. 2, 3, 4, 5, 6, 7, 8, 9) provides a source of predict-
ability for TC genesis at the subseasonal timescale. Then, by 
combining the TC track density of the seven clusters, we can 

obtain a probability map of TCF. This prediction method was 
proposed by Camargo et al. (2007a) and applied to predicting 
seasonal TCs by Chu et al. (2010) and Kim et al. (2012). In 
this study, we developed a statistical model to predict the TC 
genesis numbers and the probability distribution of TC tracks 
in every 10-day period at forecast lead times of 10–40 days.

Figure 10 illustrates the detailed steps of the prediction 
model’s construction. The first step is to obtain distinct TC 
clusters by applying the clustering method to the histori-
cal (1982–2008) TC best-track dataset (such as the result 
in Fig. 1). Since the TCs rarely occurred in a daily interval, 
our predictand here is the TC count in every 10-day period 
to pay more close attention on the intraseasonal variations 
of TC activity. Considering that the seasonal cycle of TC 
count is steady climatologically, we focus only on the pre-
diction of TC count anomalies (deviations from a seasonal 
cycle of 10-day means). The seasonal cycle 10-day mean 
for each TC cluster retains only the mean and the first three 
harmonics of the daily climatology (black curves in Fig. 11) 
during the training period (1982–2008). Considering the dif-
ferent modulations of ISO under different ENSO phases, we 
constructed different statistical models for different ENSO 
phases. In other words, three statistical models were devel-
oped for each TC cluster: one for El Niño years, one for La 
Niña years, and another for neutral years. Thus, in the sec-
ond step, based on the lead–lag relationships between TCs 
and ISO anomalies with a temporal resolution of a 10-day 
period (10-day mean), the potential predictors associated 
with ISO environments (mainly the factors of GPI and SST) 
are selected. Then, a linear regression model is derived for 
predicting anomalous TC numbers of each cluster in differ-
ent ENSO phases.

Using the preceding ISO-related predictors, the anom-
alous TC counts of individual clusters in different ENSO 
phases are predicted. By adding the climatological seasonal 
cycle of 10-day period TC counts to the predicted anomalies 
of TC counts, the total TC counts for each cluster can be 
obtained. The final step (Step 3 in Fig. 10) is to construct 
the probability maps of TCF over the entire WNP basin. 
The TCF is defined as the frequency of TC occurrence in 
a particular 5° × 5° (latitude × longitude) grid box, which 
indicates how often TCs pass through a specific grid box. 
This could be achieved by multiplying the TC counts of each 
cluster by the climatological probability of the track density 
of the corresponding ENSO phases. The results of all seven 
clusters are then summed. Following Kim et al. (2012), the 
TCF probability formula can be written as:

where the variables with the superscript “obs” are observed 
variables in the mth 10-day period of the kth year; “lat” and 

(5)Pobs
k,m

(lat, lon) =
Freqobs

k,m
(lat, lon)

Nobs
k,m

× 100%,
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“lon” are the latitude and longitude in degrees, respectively; 
Freqobs

k,m
(lat, lon) indicates the observed TCF within 5° of a 

grid point (lon, lat); and Nobs
k,m

 is the observed total TC count 
over the entire WNP. Note that the TCF probability may 
exceed 100% when TCF is larger than TCN. For instance, 
if only one TC is observed over the WNP basin (TCN = 1), 
but it remains consistently over a specific grid box for 12 h 
(TCF = 2). The TCF probability equals to 200%.

A predicted probability map of TCF [ Pfcst
k,m

(lat, lon) ] can 
be approximately equal to the sum of the seven clusters 
of the climatological probability of corresponding ENSO 
phases multiplied by the predicted TC counts (anomalous 
counts plus climatological 10-day period TC counts):

Here, the variables with the superscript “fcst” are the pre-
dicted variables; Cn represents the nth cluster; N is the total 
number of clusters (i.e., seven in this study); P

obs

e,Cn,m
(lat, lon) 

is the mth climatological probability of Cn during K years; 
and e is the ENSO phase of a specific TC season (e = 1, 2, 3 

(6)

Pfcst
k,m

(lat, lon) =
1

Nfcst
k,m

[
N∑

n=1

Nfcst
Cn,k,m

× P
obs

e,Cn,m
(lat, lon)

]

× 100%;

(7)P
obs

e,Cn,l
(lat, lon) =

K∑

k=1

Freqobs
e,Cn,t,l

(lat, lon)

Nobs
e,Cn,t,m

.

refers to El Niño, La Niña, and neutral years, respectively). 
Here, the climatological probability is calculated using the 
TC data during the training period (1982–2008).

A “perfect reconstruction” based on “true” TC counts 
(instead of predicted TC counts) is used as the assess-
ment benchmark. The perfect reconstruction probability 
[ Ppfrc

k,m
(lat, lon) ] is written as

We use the first 27-year period (1982–2008) as the train-
ing period and the last 10-year period (2009–2018) as the 
independent forecast period. During a TC season, there 
are 18 10-day-mean time points (1–10 June, 11–20 June, 
…, 18–27 November). Thus, we include 486 10-day time 
points (18 10-day-mean time points × 27 years) in the train-
ing period and 180 10-day-mean time points (18 10-day-
mean time points × 10 years) in the forecast period. For a 
real-time operational application, the ISO (10–90-day) com-
ponents are derived using a non-bandpass filtering method 
(Hsu et al. 2015). The following two steps are performed. 
First, the daily anomaly fields are obtained by subtracting the 
climatological mean and the first three harmonics of the cli-
matological annual variability from the raw data to remove 
the low-frequency background state. Then, a 10-day mean 

(8)

P
pfrc

k,m
(lat, lon) =

1

Nobs
k,m

[
N∑

n=1

Nobs
Cn,k,m

× P
obs

Cn,m
(lat, lon)

]

× 100%.

Fig. 10  Steps for constructing the subseasonal TC prediction model
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is applied to match the prediction interval of a 10-day mean 
and to remove the synoptic-scale component (with a period 
shorter than 10 days).

4.2  Selection of predictors

To identify potential predictors for each TC cluster, we ana-
lyze a lead–lag correlation analysis between anomalous TC 
counts and preceding ISO-related dynamic and thermody-
namic factors, including the GPI and its associated param-
eters in different ENSO phases (Fig. 12). For instance, if the 
preceding MPI (Emanuel 1995) anomalies, which encom-
pass the influences of oceanic and atmospheric thermody-
namic factors like SST and vertical profiles of air tempera-
ture and specific humidity, exhibit a notable correlation with 
the genesis of a particular TC cluster, we can consider them 
as potential predictors for forecasting this type of TC.

The results show that the TC genesis counts are not only 
correlated with local environmental conditions during the 
genesis period (lead 0d; top panels), but also with remote 
effects associated with the spatiotemporal evolution of 
the ISO (lead 10–40d, shown in seven lower panels). 

Moreover, significant correlation patterns between TCs 
and ISO-related dynamic and thermodynamic factors vary 
in different ENSO conditions (Fig. 12b–d, f–h). Although 
the predictors are selected based on the statistically signifi-
cant grid points, the correlation patterns are large in scale. 
For instance, the anomalous TC counts of C1 are posi-
tively correlated with GPI anomalies in the main genesis 
regions situated over the tropical WNP (Fig. 12a1). This 
positive GPI anomaly emerges in the tropical WNP about 
20 days before TC genesis (Fig. 12a4) and then propa-
gates northeastward towards the western WNP region 
(Fig. 12a1–a4). Additionally, the anomalous TC counts of 
C6 are positively correlated with MPI anomalies over the 
eastern Pacific and negatively correlated with MPI anoma-
lies over the western Pacific, as in the El Niño condition in 
the climatology (Fig. 12e). This finding suggests that ISO-
related SST anomalies, like the El Niño-related large-scale 
pattern, could modulate the TC genesis frequency on the 
ISO timescale. The correlation maps between ISO-related 
dynamic and thermodynamic factors during positive and 
negative ENSO phases demonstrate the intraseasonal cor-
relations between anomalous TC counts and the preceding 

Fig. 11  Climatological 10-day 
mean TC counts of a–g C1–C7 
and h TCall. The yellow bars 
and thick black lines are the raw 
climatology and the smoothed 
annual cycle (only the mean 
and first three harmonics of the 
daily climatology retained) of 
the years 1982–2008
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ISO-related factors, which exclude the low-frequency 
influence of ENSO. For example, compared to the clima-
tological correlations, the positive MPI anomalies over 
the central and eastern Pacific disappear and only negative 
MPI anomalies are found over the tropical central Pacific 
during El Niño years (Fig. 12e). The climatological nega-
tive MPI anomalies over the tropical WNP become posi-
tive and disorganized (Fig. 12b). In contrast to El Niño 
years, negative and positive MPI anomalies are found over 
the tropical WNP and eastern North Pacific, respectively, 
during La Niña years (Fig. 12c).

Considering the different correlation patterns between 
anomalous TC counts and ISO-related large-scale fields in 
different ENSO phases and the spatiotemporal evolution 
of the ISO (e.g., Fig. 12), it is cumbersome and subjective 
to select predictors based on the highly correlated box for 
each ENSO phase, each forecast lead time, and each cluster. 
Therefore, we use a method similar to STPM in Hsu et al. 
(2015) to select predictors. First, in terms of the correlation 
coefficient (Cor) patterns for regions where anomalous TC 
counts (Xe) for each cluster and the ISO-related large-scale 
fields (Ye) are statistically significantly correlated at the 95% 

Fig. 12  Temporal correlation coefficients (TCCs; shading) between 
TC count anomalies of a–d C1 and GPI, and e–h C6 and MPI during 
a, e all years, b, f El Niño years, c, g La Niña years, and d, h neutral 
years of 1982–2008, at 0-day, 10-day, 15-day, 20-day, 25-day, 30-day, 

35-day and 40-day leads (from top to bottom). Only the TCCs that 
are statistically significant at the 95% confidence level are shown. TC 
genesis locations are represented as green dots



1879Influences of ENSO and intraseasonal oscillations on distinct tropical cyclone clusters over…

1 3

confidence level (i.e., shading in Fig. 12), we focus only on 
those over Asia and the North Pacific (20° S–40° N, 40° 
E–90° W):

where i and j denote the zonal and meridional grid points, 
respectively, l represents the lead times for the prediction 
time, and e indicates the ENSO phases of the TC seasons 
(i.e., Figs. 12b–c, f–h). Next, the PC predictors associated 
with large-scale fields are obtained by projecting anomalous 
large-scale fields onto Cor(Xe, Ye) fields. The transfer func-
tion is then constructed by using a linear regression method. 

(9)Cor
(
Xe, Ye

)
= r(e, i, j, l),

The parameters α and β are the regression coefficients of the 
prediction model during the training period. For each TC 
cluster, there are seven statistical models (seven predictors) 
for each ENSO phase.

When we start the forecasting procedure, the ENSO phase 
of the TC season is first predicted based on the NMME pre-
diction results. The predicted ENSO phase of the TC season 
determines which statistical model we choose. For example, 
if the Niño-3.4 index exceeds 0.8σ, we choose the El Niño 
statistical model (e = 1) to predict each TC cluster. Note that 
the NMME has stable and skillful predictions for ENSO 
conditions. Temporal correlation coefficients between the 
observed and predicted Niño-3.4 index for TC seasons at 

Fig. 12  (continued)
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1- to 3-month lead forecasts range from 0.94 to 0.97, which 
are statistically significant at the 99% confidence level. 
Despite decreasing model skill with longer lead times, cor-
relation coefficients remain significant even for the 9-month 
lead forecast. Proficiently predicting ENSO state months 
provides us with the assurance to employ suitable statistical 
models for TC predictions based on both HF and LF signals.

4.3  Prediction skill of subseasonal TC activity

Figure 13 depicts the overall prediction skill of the sta-
tistical model based on the assessments of independent 
forecast results. The figure represents the temporal cor-
relation coefficient (TCC) and root-mean-square error 
(RMSE) associated with each predictor at various lead 
times. As shown in Fig. 13, the model’s prediction skill 
tends to diminish as the lead time increases, as evi-
denced by smaller TCCs and larger RMSEs. Notably, for 
the prediction of anomalous TC counts, the TCCs and 
RMSEs associated with TCall (Fig. 13a) and the sum of 
C1–C7 (Fig. 13b) differ among predictors at lead times 
of 15–30 days. Specifically, the RMSE of TCall ranges 
from 1.0 to 1.3, while that of the sum of C1–C7 increases 
to 1.1–1.75. Furthermore, the vertical velocity at 500 hPa 
exhibits the highest prediction skill for both TCC and 
RMSE among six predictions (gray lines in Fig.  13), 
whereas the GPI shows the fastest drop in prediction skill 
(red lines in Fig. 13). Although the SSTA predictor does 
not demonstrate the highest prediction skill during lead 
0–10 days, its prediction skill remains stable even at lead 
times beyond 25 days (pink lines in Fig. 13). Additionally, 

the ensemble prediction’s TCC is statistically significant at 
the 95% confidence level at a lead time of 30 days (thick 
black lines in Fig. 13).

To demonstrate the importance of developing statisti-
cal forecast models tailored to different ENSO conditions, 
we compared our statistical model that incorporates ENSO 
effects (red lines, hereafter referred to as ENSO-fcst) with 
a simple statistical model based on climatological correla-
tions that do not consider ENSO effects (blue lines, hereafter 
referred to as clim-fcst), as depicted in Fig. 14a. The analysis 
reveals that the prediction skills of ENSO-fcst and clim-fcst 
models are comparable at lead times of 10–15 days. How-
ever, at lead times of 20–40 days, the TCCs of the clim-fcst 
forecast model decline more rapidly and become statistically 
insignificant at the 95% confidence level, whereas the TCCs 
of the ENSO-fcst forecast model decrease more gradually 
and retain prediction skill up to a lead time of 30 days. The 
superior TCCs of the ENSO-fcst forecast model over the 
clim-fcst model indicate the advantage of developing sta-
tistical models that account for different ENSO phases. 
Furthermore, we observe that for the prediction of anoma-
lous TC counts, the prediction skill of the sum of C1–C7 
is higher than that of TCall at lead times of 10–30 days, 
indicating the need to construct statistical forecast models 
for individual TC clusters. We also utilized a stepwise mul-
tiple linear regression model to predict anomalous counts 
for each cluster at each lead time (not shown). The predic-
tion skills were less skillful than that of the ensemble mean 
of linear regression models by each predictor. This may be 
attributable to the persistence of overfitting in the multiple 
linear regression.

Fig. 13  a TCCs and c RMSEs between observed and predicted TCall 
count anomalies. b, d As in a, c but for the sum of C1–C7. Red, blue, 
green, orange, brown, gray, and pink lines in a–d denote the forecast 
skills by using GPI, GPI components associated with vorticity at 850 
hPa (Vort), relative humidity at 700 hPa (RH), MPI, the vertical wind 

shear (VWS), the vertical velocity at 500 hPa (Omega), and SST as 
predictors, respectively. Thick black lines represent the skills of the 
ensemble results. Dashed lines in a–b mark the 95% confidence level 
of the Spearman rank order correlation coefficients based on the 
effective degree of freedom
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After adding the climatological 10-day-mean TC counts 
to the predicted TC count anomalies, the TCCs of the sum 
of C1–C7 at the lead times of 10–30 days are higher than the 
climatological prediction, but they are lower than the clima-
tological prediction after the 30-day forecast lead (Fig. 14b). 
The climatological prediction is the result of climatologi-
cal 10-day-mean TC counts during the training period. The 
RMSEs are standard deviations of 1.00–1.35 (Fig. 14c). The 
reason why we utilize the intraseasonal anomaly deviations 
from the seasonal climatology as predictands in a linear 

regression model instead of total TC counts as predictands 
in a Poisson regression model is that the significant sea-
sonal climatology of TC counts would contribute most of the 
prediction skill in a total TC counts prediction model. We 
also developed a Poisson regression model for the total TC 
counts by utilizing the same potential predictors as described 
in Sect. 4.2. The prediction skill of the Poisson regression 
model was at a lead time of 10 days (not shown), which is 
lower than the result of the current linear regression model. 
Once the TC counts for each cluster are predicted, the prob-
ability map of TCF can be obtained by considering the cli-
matological TCF distribution (introduced in Sect. 4.1). Here, 
we show four TCF cases to provide a visual impression of 
TCF prediction (Fig. 15). Four TCF cases are during 21–30 
June 2012, 10–19 August 2018, 31 July–9 August 2014, and 
9–18 September 2010. The model can predict the regions 
with a higher probability of TCF in the observation (top 
panels in Fig. 15) at the lead time of 10–20 days. The pre-
dicted probability map of TCF of the perfect construction 
(second from top panels in Fig. 15) reveals errors of the 
model predicted biases in TC counts for a specific cluster 
(or some clusters).

5  Discussion and conclusions

Although ISO and ENSO modulations of basin-wide TC 
activities have been documented (Chia and Ropelewski 
2002; Wang and Chan 2002; Camargo et al. 2007a; Li and 
Zhou 2013a, b; Zhao et al. 2015), how the 10–30-day and 
30–90-day ISOs influence distinct TC clusters (with differ-
ent genesis locations and trajectories) over the WNP and 
the ENSO effects on ISO–TC connection needed further 
examination, as addressed in this study. Specifically, we 
classified the WNP TCs into seven clusters using the fuzzy 
c-means clustering method (Fig. 1), consistent with previous 
studies (Camargo et al. 2007a, b; Kim et al. 2011; Zhang 
et al. 2016b; Qian et al. 2020). Based on a spectral analysis 
of TC genesis counts for each cluster, it was found that all 
seven clusters display significant variability at subseasonal 
timescales, with peak spectrums in the HF (10–30-day) and 
LF (30–90-day) ISO bands (Fig. 2). The probability of TC 
genesis for each cluster varies with the phase evolutions of 
the two ISO modes (Figs. 3, 4). Generally, the TCs of each 
cluster are more likely to be generated when the ISO con-
vective and low-pressure anomalies propagate into the main 
genesis regions of the specific cluster (Figs. 3, 4).

To elucidate the modulating effects of the two ISO modes 
on the genesis of different clusters of TCs, the scale-decom-
posed GPI anomalies were diagnosed (Fig. 6), because the 
intraseasonal GPI distribution can capture the genesis pat-
terns of individual clusters (Fig. 5). The diagnostic results 
suggest that the ISO-related relative humidity is the leading 

Fig. 14  TCCs between the observed and predicted a anomalous and 
b total TC count (sum of C1–C7 in blue, TCall in red) and c the 
RMSEs of total TC counts (open dot-dashed lines indicate the results 
of the sum of C1–C7; solid dot lines indicate the results of TCall) at 
different forecast lead times from 0 to 40 days (x-axis). The black line 
in a is the 95% significance level of the Spearman rank order correla-
tion coefficient based on the effective degree of freedom. The black 
line in b is the TCC skill of climatological prediction. Blue dotted 
lines represent the TCC prediction skill of clim-fcst statistical models
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factor contributing to the intraseasonal GPI anomalies for 
all seven clusters. The ISO-related low-level absolute vor-
ticity plays a secondary role. Indeed, these two dominant 
factors have been documented as important for WNP basin-
wide TC genesis in previous studies (Zhao et al. 2015). In 
addition to the process of TC genesis, we also examined 
the influences of ISO on the movement of TCs for indi-
vidual clusters. Accompanied by the intraseasonal cyclonic 

anomalies over the TC genesis locations, the background 
steering flows associated with different clusters vary geo-
graphically (Fig. 7). For the straight-moving TCs (C1, C5, 
and C6), the ISO-related cyclonic flows appear over the 
SCS and the Philippine Sea in the low latitudes, leading to 
enhanced easterly flow related to the westward extension of 
the WNP subtropical high. In contrast, the eastward shift of 
the WNP subtropical high induced by the strengthened ISO 

Fig. 15  Four cases of TC frequency (TCF) probability distributions 
during a 21–30 June 2012, b 10–19 August 2018, c 31 July–9 August 
2014, and d 9–18 September 2010. From top to bottom: observation, 
perfect reconstruction, and prediction at leads of 10, 15, 20, 25, and 
30 days. The TCF probability at each grid point is defined as the TCF 

in each 5° × 5° box divided by the total TC count over the WNP. The 
red typhoon symbols and curves indicate the observed TC genesis 
locations and trajectories for each TC case. The pattern correlation 
coefficients between observations and predictions are shown in the 
upper-right corner of each panel
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cyclonic flow favors the recurving TCs of C4 and C7. The 
results based on background steering flows of different clus-
ters clearly illustrate the ISO effect on TC tracks, supporting 
previous findings using a composite of relatively limited TC 
cases (Chen et al. 2009).

Considering the significant influence of ENSO on TC 
activities at interannual timescales (Wang and Chan 2002; 
Camargo and Sobel 2005), the different modulation by LF 
(Fig. 8) and HF (Fig. 9) ISO of the intraseasonal TC gen-
esis in different ENSO phases should also be discussed. 
Although the total TC counts in the WNP during El Niño 
and La Niña years are similar, the TCs of individual clusters 
are significantly influenced by ENSO (Figs. 8, 9). There are 
more TCs generated in the southeast quadrant of the WNP, 
such as those of C3, C4, and C6, during El Niño years com-
pared with those of the same clusters during La Niña years. 
The modulations of HF and LF ISO in some specific phases 
on the total numbers of TCs over the WNP are different 
during El Niño and La Niña years, which are changed by 
the low-level winds associated with ENSO conditions. The 
modulations of HF and LF ISOs on the TCs generated in the 
southeast quadrant of the WNP, such as the TCs of C3, C4, 
and C6, are relatively weaker during La Niña years com-
pared with El Niño years. The modulations of ISOs on land-
falling TCs (C5 and C7) are weaker during El Niño years.

Based on these diagnostic results, we developed lin-
ear regression models using the ISO-related large-scale 
fields as predictors for predicting anomalous TC genesis 
counts (relative to smoothed climatological 10-day-mean 
TC counts) every 10 days for each cluster and each ENSO 
phase (Fig. 10). The prediction skill for TC genesis counts, 
as assessed by the TCC, suggests that the statistical model 
has the capability of predicting anomalous TC genesis num-
bers at the lead time of 30 days, which is superior to the 
prediction skills of models that do not consider the effects 
of ENSO (Fig. 14). Predicted probability maps of TCF were 
then constructed by considering the climatological probabil-
ity distribution of each cluster (Kim et al. 2012). The pre-
dicted distributions of TCF (Fig. 15) should provide useful 
information for disaster prevention and mitigation.

The predictability sources of these statistical TC forecast 
models are from the intraseasonal variabilities of large-scale 
fields associated with TC genesis (GPI components), while 
other potential sources of predictability, such as high-fre-
quency equatorial waves (Frank and Roundy 2006; Schreck 
et al. 2012; Lai et al. 2020) and extratropical–tropical inter-
action (Camargo et al. 2019), need more exploration, which 
could potentially lead to improvements in TC subseasonal 
forecasting. In addition, not only the TC genesis and fre-
quency distribution over the WNP, but also TC forecast 
products, including TC intensity and ACE, need further 
exploration.
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