
 

 

 

Seasonal Forecasts of Tropical Cyclones using 

GFDL SPEAR and HiFLOR-S 

 

 
Hiroyuki Murakami1, Thomas L. Delworth1, Nathaniel C. Johnson1,  

Feiyu Lu1,2, Colleen E. McHugh1,3, and Liwei Jia1 
 

1National Oceanic and Atmospheric Administration/Geophysical Fluid 

Dynamics Laboratory, Princeton, NJ, USA 

 
2University Corporation for Atmospheric Research, Boulder, CO, USA 

 

 
3Science Applications International Corporation, Reston, VA, USA 

 

 

 

 

 

 

 

Revised on October 29, 2024 
 

Submitted to Journal of Climate on July 5, 2024 
 

 

 

 

 

 
Corresponding author address: Hiroyuki Murakami, NOAA/GFDL, 201 Forrestal Rd., Princeton, NJ 08540-6649 

E-mail: hir.murakami@gmail.com 

Tel: 609-452-5824



 

 
 

2 

Abstract 

 1 
The seasonal prediction skill of tropical cyclone (TC) activity is evaluated using the Seamless 2 

System for Prediction and Earth System Research (SPEAR), a modeling system developed at 3 

the Geophysical Fluid Dynamics Laboratory (GFDL) for experimental real-time seasonal 4 

forecasts. Compared with previous GFDL seasonal prediction models, SPEAR demonstrates 5 

improved skill in predicting TC activity for the western North Pacific, while exhibiting 6 

comparable or slightly degraded skill for the eastern North Pacific and North Atlantic. These 7 

changes in prediction skill do not always align with changes in prediction skill in large-scale 8 

variables, particularly over the North Atlantic. This study highlights that changes in the 9 

model’s response of TCs to large-scale variables, as well as the changes in the amplitude of 10 

interannual variations in TC genesis frequency, are crucial for the changes in TC prediction 11 

skill. Using the predicted sea surface temperatures from SPEAR as lower boundary conditions, 12 

the High-Resolution Forecast-Oriented Low Ocean Resolution model (HiFLOR-S) was 13 

employed to predict intense TCs, demonstrating skillful predictions of major hurricanes that 14 

are comparable to the previous HiFLOR coupled model predictions. 15 

 16 

Significance Statement 17 

This study reveals the prediction skill in seasonal forecasting of tropical cyclones using a new 18 

experimental real-time seasonal prediction system developed at the Geophysical Fluid 19 

Dynamics Laboratory. The new system demonstrates skillful prediction of tropical cyclones in 20 

the western North Pacific, eastern North Pacific, and North Atlantic a few months before the 21 

hurricane season, with notable differences in the skill compared to the previous prediction 22 

system. The findings suggest that higher prediction skill in large-scale variables, such as 23 

vertical wind shear and sea surface temperatures, do not necessarily lead to higher prediction 24 

skill for tropical cyclones. This underscores that even when a model accurately predicts large-25 

scale variables, its predictions of tropical cyclones could still be inaccurate. Our findings 26 

emphasize the need to refine the model’s response of tropical cyclones to specific large-scale 27 

environments, rather than focusing only on improving large-scale environment predictions, to 28 

enhance the accuracy of dynamical seasonal predictions for tropical cyclones. 29 

  30 
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1. Introduction 31 

Tropical cyclones (TCs), defined as storms with a maximum wind speed of ≥17.5 m s–32 

1, are the costliest natural disasters worldwide, making the prediction of TC activity on a 33 

seasonal time scale of vital socio-economic interest. Since Gray (1984a, b), numerous studies 34 

have attempted to develop seasonal TC predictions. Comprehensive reviews of seasonal TC 35 

predictions over the past 40 years are available in Camargo et al. (2007), Klotzbach et al. 36 

(2019), and Chu and Murakami (2022). Specifically, dynamical seasonal TC predictions began 37 

in 2001 at the European Centre for Medium-Range Weather Forecasts (ECMWF) (Vitart and 38 

Stockdale 2001). Since then, many dynamical models have demonstrated skillful predictions 39 

of TC activity a few months in advance from the storm season, specifically over the North 40 

Atlantic (NA) (e.g., LaRow et al., 2008; Zhao et al., 2010; Chen et al., 2011 and 2013; Camp 41 

et al., 2015; Befort et al., 2022). 42 

However, most seasonal predictions have focused on forecasting TC activity based on 43 

basin-wide statistics, such as the basin-total frequency of named storms (with a maximum 44 

wind speed ≥17.5 m s–1), hurricanes (with a maximum wind speed ≥34.0 m s–1), major 45 

hurricanes (with a maximum speed ≥49.4 m s–1), and Accumulated Cyclone Energy (ACE; 46 

Bell et al., 2000) (Klotzbach et al., 2019; Takaya et al., 2023). These basin-wide variables have 47 

also been the targets for predicting seasonal hurricane outlooks produced by the National 48 

Oceanic and Atmospheric Administration (NOAA) (Klotzbach et al., 2019). However, the 49 

World Meteorological Organization (WMO) has suggested exploring beyond the predictions 50 

of basin-wide statistics, such as sub-basin scale information like landfalling TCs, which are 51 

more relevant to society and stakeholders (Klotzbach et al., 2019; Takaya et al., 2023). 52 

The NOAA Geophysical Fluid Dynamics Laboratory (GFDL) is one of the U.S. 53 

research institutions contributing to the North American Multi-Model Ensemble Project 54 

(NMME; Kirtman et al., 2014). Among the NMME models, GFDL models incorporate the 55 

highest horizontal resolution (i.e., 50-km mesh), enabling direct prediction of TCs. These real-56 

time and retrospective TC predictions from GFDL have been shared with the experts at the 57 

NOAA Climate Prediction Center (CPC) and the National Hurricane Center (NHC), 58 

supporting their seasonal hurricane outlook, issued each May and updated in August. 59 

Previously, GFDL had used the Forecast-oriented Low Ocean Resolution of GFDL Coupled 60 

Model version 2.5 (FLOR; Vecchi et al., 2014) and the high-resolution version of FLOR 61 
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(HiFLOR) (Murakami et al., 2015, 2016a) for real-time TC predictions. Both FLOR and 62 

HiFLOR showed reasonable skill not only for basin-wide named storms, major hurricanes, and 63 

ACE, but also for regional TC frequency of occurrence (Vecchi et al., 2014; Murakami et al., 64 

2016a,b; Zhang et al., 2017; G. Zhang et al., 2019), TC rainfall (W. Zhang et al., 2019), and 65 

extratropical transition of TCs (Liu et al., 2018). 66 

In January 2021, GFDL upgraded its real-time experimental seasonal to decadal 67 

prediction system to Seamless System for Prediction and Earth System Research (SPEAR;  68 

Delworth et al., 2020; Lu et al., 2020), replacing FLOR. The predictions from the new SPEAR 69 

system demonstrated good skill in predicting climate variability, such as ENSO (Lu et al., 70 

2020), and hydroclimate extremes, including heatwaves (Jia et al., 2022), atmospheric rivers 71 

(Tseng et al., 2021), Arctic and Antarctic sea ice (Bushuk et al., 2021, 2022), and wintertime 72 

temperature swings (Yang et al., 2022). While SPEAR was not specifically optimized for 73 

improving TC predictions relative to FLOR, the prediction skill of seasonal TC activity by 74 

SPEAR has not been investigated or reported previously. 75 

In this study, we assess the prediction skill of TCs using SPEAR and compare these 76 

evaluations with those from previous GFDL prediction models, FLOR and HiFLOR. The 77 

predictions target seasonal mean TC activities, including basin-total TC genesis frequency for 78 

different storm intensity categories, Accumulated Cyclone Energy (ACE), and Power 79 

dissipation Index (PDI), as well as regional TC occurrence and landfalling frequencies in the 80 

western North Pacific (WNP), eastern North Pacific (ENP), and North Atlantic (NA) basins 81 

(see Fig. 3 in Murakami et al., 2015 for regional boundaries). Additionally, we demonstrate 82 

prediction skill through HiFLOR downscaling from SPEAR’s predicted sea surface 83 

temperatures (SSTs). Furthermore, we examine the causes of differences in prediction skill for 84 

TC variables between the new and previous prediction models, particularly in relation to 85 

changes in the skill of large-scale variables. A unique case from the 2023 predictions is also 86 

presented, in which the two models in the new prediction system provided differing 87 

predictions for the hurricane season, with possible reasons for these discrepancies explored. 88 

Section 2 describes the methods, including models, seasonal predictions, TC detection method, 89 

observed datasets, and forecast skill metrics. Section 3 presents the results, with a summary 90 

provided in Section 4. 91 

 92 
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2. Methods 93 

a. Dynamical Models 94 

The dynamical models used in this study include FLOR (Vecchi et al., 2014), HiFLOR 95 

(Murakami et al., 2015, 2016a), and SPEAR (Delworth et al., 2020), all developed at GFDL. 96 

FLOR comprises 50-km mesh atmosphere and land components coupled with 100-km mesh 97 

sea ice and ocean components. The atmosphere and land components are adapted from the 98 

Coupled Model version 2.5 (CM2.5; Delworth et al., 2012), while the sea ice and ocean 99 

components are derived from the Coupled Model version 2.1 (CM2.1; Delworth et al., 2006). 100 

HiFLOR is nearly identical to FLOR, except for the horizontal resolution of the atmosphere 101 

and land components, which employs a 25-km mesh, along with some minor adjustments in 102 

parameters in the dynamical core and physical parameterizations (Murakami et al., 2015; 103 

Vecchi et al., 2019). 104 

The GFDL SPEAR incorporates a coupled atmospheric-oceanic model consisting of 105 

the new AM4-LM4 atmosphere and land-surface model (Zhao et al., 2018), coupled with the 106 

MOM6 ocean model and SIS2 sea-ice model (Adcroft et al., 2019). Similar to FLOR, SPEAR 107 

employs a 50-km mesh for the atmosphere and land components and a 100-km mesh for sea 108 

ice and oceanic components. 109 

 110 

b. Retrospective Seasonal Predictions 111 

For each year and month from 1992 to 2020, 12-month retrospective seasonal 112 

predictions were generated by initializing each model to observationally constrained 113 

conditions for the ocean and sea ice components (Vecchi et al., 2014; Murakami et al., 2015, 114 

2016; Lu et al., 2020). A summary of the seasonal predictions is provided in Table 1. 115 

 116 

Table 1 Prediction configurations. For each previous prediction system (i.e., FLOR and 117 
HiFLOR) and new prediction system (i.e., SPEAR and HiFLOR-S), the following are listed: 118 
horizontal resolution of atmosphere and land components; horizontal resolution of ocean and 119 
sea-ice components; number of ensemble members for the predictions; methods to generate 120 
ocean initial conditions; methods to generate atmosphere and land initial conditions; period for 121 
retrospective predictions; initial months; methods for ocean bias adjustments during forecasts; 122 
and reference for the model and predictions. 123 



 

 
 

6 

 124 

 125 

For the FLOR and HiFLOR predictions, the 12-member initial conditions for the ocean 126 

and sea ice were generated using the GFDL’s ensemble coupled data assimilation system 127 

(ECDA; Zhang and Rosati 2010; Chang et al., 2013). The atmosphere and land components 128 

were initialized from a suite of SST-forced atmosphere-land-only simulations (Vecchi et al., 129 

2014). HiFLOR provides forecasts initialized on the first day of the month only from July, 130 

June, April, and January, whereas FLOR offers forecasts starting every month. To mitigate 131 

climatological biases in SSTs and the associated model drift with increasing lead time, 132 

seasonal predictions by FLOR were conducted using “flux adjustment”, which adjusts the 133 

model’s air-sea fluxes of momentum, enthalpy, and freshwater to align the long-term 134 

climatology of SST and surface wind stress with the observations (Vecchi et al., 2014). 135 

HiFLOR predictions do not apply flux adjustment. 136 

For the SPEAR predictions, the 15-member initial ocean conditions were generated 137 

with SPEAR_ECDA (Lu et al., 2020). The atmosphere and land components, as well as the 138 

sea ice component for SPEAR, were initialized from restoring simulations, where the SSTs 139 

were nudged to the values of Optimum Interpolation Sea Surface Temperature (OISST, 140 

Reynolds et al., 2002). The SPEAR predictions incorporate ocean tendency adjustment (OTA; 141 

Lu et al., 2020) to reduce three-dimensional oceanic biases, improving SST climatology and 142 

variability.  143 

To complement SPEAR for intense TC predictions, we conducted HiFLOR predictions 144 

forced with the predicted SSTs by SPEAR (HiFLOR-S). These HiFLOR-S predictions were 145 

not initialized with data assimilation experiments, although simulated SSTs were nudged to 146 

SPEAR-predicted SSTs at a 5-day time scale. The initial conditions of ocean and sea ice 147 

components for HiFLOR-S were derived from an arbitrary year in a HiFLOR long-term 148 

control climate simulation. For example, ensemble member 1 is initiated from the restart file 149 

of year 101, while ensemble member 2 is initiated from that of year 111. However, our 150 
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preliminary assessment revealed that the choice of years has little impact on the results of TC 151 

predictions, as prescribing SSTs from the SPEAR-predicted values is more critical for TC 152 

predictions than the differences in ocean initial conditions. Meanwhile, the atmosphere and 153 

land initial conditions were derived from the SST nudged experiments in which the SSTs were 154 

nudged to the values of OISST. 155 

We primarily compare the predictions of TC activity in the WNP, ENP, and NA in the 156 

boreal summer and early fall season (i.e., July–November). Forecasts initialized in July 157 

(January) are defined as lead-month 0 or L0 (6 or L6) forecasts. Since the retrospective 158 

predictions by FLOR and HiFLOR are only available for the period 1992–2020, we compare 159 

these predictions with the predictions by SPEAR and HiFLOR-S over the same period. Given 160 

the limited computational resources, retrospective predictions are only available for L0, L2, 161 

and L3 for HiFLOR-S, and L0, L1, L2, L5, and L6 for HiFLOR, although retrospective 162 

predictions are available for every initial month between L0 and L6 for SPEAR and FLOR. 163 

Additional prediction differences for the summer of 2023 will be shown for SPEAR and 164 

HiFLOR-S in Section 3. c. 165 

Vecchi et al. (2014) revealed that the prediction skill in the basin-wide frequency of 166 

hurricanes in the NA by FLOR showed comparable or higher prediction skill compared with 167 

other state-of-the-art prediction systems (e.g., Vitart et al., 2007; Klotzbach and Gray 2009; 168 

Zhao et al., 2010; LaRow et al., 2010; Wang et al., 2009; Chen and Lin 2013; see Fig.9 in 169 

Vecchi et al., 2014). Therefore, the prediction skill of FLOR can serve as a reference for 170 

typical skill obtained by dynamical TC seasonal predictions. As also noted by Befort et al. 171 

(2022), prediction skill for TC activity is relatively higher in the NA than in other ocean basins 172 

like the WNP and ENP for most of the dynamical model predictions. 173 

 174 

c. TC Detection Method 175 

The detection of model-generated TCs followed the method outlined by Harris et al. 176 

(2016) and Murakami et al. (2015). Briefly, the tracking scheme employs the flood fill 177 

algorithm to identify closed contours of a specified negative sea level pressure (SLP) anomaly 178 

with a warm core (temperature anomaly higher than 1K for FLOR and SPEAR and 2K for 179 

HiFLOR and HiFLOR-S). Additionally, the detection scheme requires that a TC must persist 180 

for at least 36 hours while maintaining its warm core, along with meeting a specified surface 181 
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wind speed criterion (15.75 m s–1 for FLOR and SPEAR and 17.5 m s–1 for HiFLOR and 182 

HiFLOR-S). These thresholds were determined by the previous studies of FLOR and HiFLOR 183 

(Murakami et al. 2015). Because the horizontal resolution of FLOR and SPEAR is 50-km 184 

mesh and unable to represent intense TCs, the warm core and wind speed threshold were 185 

relaxed from those for HiFLOR and HiFLOR-S as in the previous studies (Murakami et al. 186 

2015). 187 

 188 

d. Observational Datasets and Large-scale Variables 189 

The observed TC “best-track” data for the period 1992–2023 were obtained from the 190 

International Best Track Archive for Climate Stewardship (IBTrACS v04r00) (Knapp et al., 191 

2010). We use a compilation from the NHC and Joint Typhoon Warning Center (JTWC), 192 

identified by the flag ‘usa’ in the IBTrACS dataset. We considered TCs with tropical storm 193 

intensities or stronger, defined as TCs possessing 1-minute sustained surface winds of 17.5 m 194 

s–1 or greater. 195 

We utilized the OISST (Reynolds et al., 2002) and the Japanese 55-year Reanalysis 196 

(JRA-55) (Kobayashi et al., 2015) for the period 1992–2023 as observed SST and atmospheric 197 

large-scale variables, respectively. To elucidate the factors contributing to the differences in 198 

the prediction skill in TCs among the GFDL models, we compared the prediction skill in key 199 

large-scale variables. These large-scale variables include vertical wind shear between 850hPa 200 

and 200 hPa (Vs), relative humidity at 600 hPa (RH600), absolute vorticity at 850 hPa (ζa850), 201 

Maximum Potential Intensity (MPI; Bister and Emanuel, 1998), vertical motion at 500 hPa 202 

(ω500), shear vorticity of zonal winds at 500 hPa (Uy500), and SST anomaly (SST), which are 203 

commonly used for tropical cyclone genesis potential indices (e.g., Emanuel and Nolan, 2004; 204 

Murakami and Wang, 2010; Wang and Murakami, 2020; Murakami and Wang, 2022). Here, 205 

anomalies are defined as the deviations from the mean climatology of 1992–2020, with 206 

climatology calculated separately for each lead month prediction. These large-scale variables 207 

were evaluated exclusively over the main development region of TCs for each WNP (10–208 

25°N, 110–150°E), NA (10–25°N, 80–20°W), and ENP (5–25°N, 130–100°W) ocean basin. 209 

 210 

e. Metrics for Evaluation of Forecast Skill 211 
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As in Murakami et al., (2016a), storms are classified into three categories based on 212 

their lifetime maximum intensity: Tropical Storms (TCS; ≥17.5 m s–1); Hurricanes (HUR; 213 

≥32.9 m s–1); and Category 3–5 (or major) hurricanes (C345; ≥49.4 m s–1). We note that while 214 

a hurricane is referred to as a “typhoon” in the WNP, we use the term “hurricanes” for WNP 215 

typhoons in this study. Additionally, we considered ACE, defined as the sum of the square of 216 

the maximum surface wind velocity throughout the lifetime of a TC, normalized by a factor of 217 

105 (105 m2 s–2; Bell et al., 2000). Along with ACE, we evaluated PDI, which is similarly 218 

defined, but as the sum of the cube of the maximum surface wind velocity throughout the 219 

lifetime of a TC, normalized by a factor of 107 (107 m3 s–3; Emanuel, 2005, 2007). We 220 

examined the prediction skill in interannual variation of the basin-wide frequencies for TCS, 221 

HUR, C345, ACE, PDI, and the landfalling TCs over the Continental U.S. (US), Caribbean 222 

Islands (CAR), and Hawaiian Islands (HI). 223 

As outlined in Murakami et al. (2016a), we employed two scores to assess prediction 224 

skill for the TC activity relative to observed values: Spearman’s rank correlation coefficient 225 

(RCOR) and mean square skill score (MSSS) (Kim et al., 2012; Li et al., 2013). Following 226 

Vecchi et al. (2014), we chose Spearman’s rank correlation instead of Pearson’s correlation as 227 

our correlation metric because we do not expect the ensemble-mean forecasts of TC counts 228 

and the observed annual TC counts (integer values) to follow a Gaussian distribution. 229 

Additionally, Pearson’s correlation is sensitive to outliers, which are common in TC data, as 230 

extreme values can disproportionately influence the coefficient and distort the perceived 231 

relationship between predictions and observations. In contrast, RCOR measures the forecast 232 

system’s ability to correctly identify the relative ranking of years from least to most active in 233 

the observed record. 234 

 MSSS is defined by the following equation: 235 

𝑀𝑆𝑆𝑆 ≡ 1 −
1

𝑛
∑ (𝑓𝑖

𝑜𝑏𝑠−𝑓𝑖)
2𝑛

𝑖=1
1

𝑛
∑ (𝑓𝑖

𝑜𝑏𝑠−𝑓𝑜𝑏𝑠)2𝑛
𝑖=1

, (1) 236 

where n is the total number of years, 𝑓𝑖
𝑜𝑏𝑠 and 𝑓𝑖  are the values from observations and 237 

predicted values for the ith year, respectively, and  𝑓𝑜𝑏𝑠 is the observational mean. The MSSS 238 

compares the model’s skill against climatological forecasts, with values greater than zero 239 

indicating better predictive skill than a climatological forecast (Kim et al., 2012; Li et al., 240 

2013). 241 
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Throughout the analysis, unless presenting raw predicted results, both TC and large-242 

scale variables are normalized by subtracting the climatological mean and dividing by the 243 

standard deviation, with these mean and standard deviation values specific to each model’s 244 

lead month. After normalization, RCOR and MSSS are computed. We assess the statistical 245 

significance of RCOR using a two-tailed test, with the test statistic asymptotic t-distributed 246 

with n–2 degrees of freedom, where n is the sample size, adjusted for observed autocorrelation 247 

(Siegel and Castellan, 1988).  248 

We also used the bootstrap method proposed by Murakami et al. (2013) to evaluate the 249 

statistical significance of the mean difference between model experiments. Two tested 250 

populations were resampled in pairs 2,000 times, and the mean difference for each pair was 251 

calculated, creating a new distribution with 2,000 samples. A 95% confidence interval was 252 

derived from this distribution and compared with the original mean difference. 253 

 254 

3. Results 255 

a. Retrospective Forecast of Basin-Wide TC Activity 256 

We first compare the retrospective forecast skill in basin-wide seasonal TC activity 257 

over the NA between FLOR and SPEAR and between HiFLOR and HiFLOR-S. Figure 1 258 

shows the time series of observed and predicted TCS, HUR, C345, and ACE from the July 259 

initial predictions (i.e., L=0). Generally, the new prediction system (i.e., SPEAR and HiFLOR-260 

S) exhibited similar though usually slightly lower skill than the previous prediction system 261 

(i.e., FLOR and HiFLOR), although both systems show statistically significant correlations, 262 

covering the observations within their 90% range estimated from the ensemble members. 263 

There are some clear differences in active seasons between SPEAR and FLOR. For example, 264 

SPEAR predicted a higher number of HUR for 1995 than FLOR (Fig. 1b). However, this 265 

feature is inconsistent; for example, FLOR predicts a higher number of HUR for 2005 than 266 

SPEAR. 267 
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 268 

FIG. 1 Retrospective predictions of (a) basin-wide frequency of TCS, (b) HUR, (c) C345, and 269 
(d) ACE in the NA during the peak TC season of July–November for the period 1992–2020 270 
initialized in July. The black lines represent the observed values, the red lines represent the 271 
mean values of the new prediction system (SPEAR or HiFLOR-S), and the blue lines 272 
represent the mean values of the previous prediction system (FLOR or HiFLOR). Shading 273 
indicates the 90% confidence intervals computed by convolving inter-ensemble spread based 274 
on the Poisson distribution. The values of “RCOR” and “RMSE” in each panel indicate the 275 
rank correlation coefficient and root-mean-square error between the predictions and 276 
observations, respectively. Units: number per year for TCS, HUR, and C345 and 105 m2 s–2 per 277 
year for ACE. 278 
 279 

Figure 2 compares the RCOR skill of TC activities for each initial month. While Fig. 1 280 

indicates that the new prediction system worsens the prediction skill in the NA from the July 281 

initial conditions, this is not always the case for different initialization months. Overall, both 282 

SPEAR and FLOR demonstrate statistically significant skill in predicting TCS and HUR in the 283 

NA from lead-month 0 to 2 predictions (Figs. 2a,d).  SPEAR also shows skillful predictions of 284 
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TCS and HUR at lead-month 4, although the skill at lead-month 3 is not statistically 285 

significant. Additionally, Fig. 2 displays prediction skill for the WNP and ENP, revealing that 286 

SPEAR generally outperforms (underperforms) FLOR for TCS and HUR predictions in the 287 

WNP (ENP). For the comparison of C345 predictions between HiFLOR and HiFLOR-S, both 288 

show comparable prediction skill across the three ocean basins (Figs. 2g–i). Generally, ACE 289 

predictions exhibit skill even from February's initial predictions (Figs 2j,k,l), indicating greater 290 

skill in ACE predictions compared with TC frequency predictions. 291 

 Previous studies have reported that ensemble means of multi-models often outperform 292 

individual models in TC seasonal predictions (e.g., Vitart 2006; Vitart et al. 2007). In this 293 

study, we also assessed the prediction skill of the ensemble means of SPEAR and FLOR  294 

(shown by the purple lines in Fig. 2). Our findings indicate that the prediction skill of the 295 

multi-model ensemble mean is not simply an average of the skill of the two individual models. 296 

In some instances, the multi-model ensemble mean outperforms both models, particularly for 297 

ACE predictions. This result highlights the potential for further improvements in prediction 298 

skill by utilizing a multi-model ensemble approach. 299 
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 300 

FIG. 2 RCORs between observed and predicted TC activity for each initial month from 301 
January (L6) to July (L0). (a)–(c) TCS, (d)–(f) HUR, (g)–(i) C345, and (j)–(l) ACE over (left) 302 
the NA, (middle) WNP, and (right) ENP. The red lines depict predictions by the new 303 
prediction system (SPEAR or HiFLOR-S), whereas the blue lines depict predictions by the 304 
previous prediction system (FLOR or HiFLOR). The purple lines are multi-model ensemble 305 
means of the new and previous prediction systems. Filled marks indicate statistically 306 
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significant RCORs at a 95% confidence level, whereas open marks denote non-significant 307 
RCORs. 308 
 309 

To provide a more comprehensive quantification of how the TC metrics of the new 310 

prediction system compare with those of the previous prediction system, we display scatter 311 

plots of RCOR and MSSS in Fig. 3 for interannual variation of seasonal mean value between 312 

observations and predictions. Here, we compare basin-wide frequencies of TCS, HUR, 313 

landfalling frequencies of CAR and HI, and basin-total values of ACE and PDI. A maker 314 

above the diagonal line indicates that SPEAR outperforms FLOR for the TC metric at the 315 

specified lead month. 316 

As expected, the shortest lead-month forecasts (e.g., L0 and L1) generally yield higher 317 

RCOR and MSSS than the longer lead months (e.g., L5 and L6) for most of the TC variables. 318 

It is also worth noting that models generally predict ACE better than TCS (Fig. 3), a finding 319 

consistent with previous studies (e.g., Murakami et al., 2016a). Overall, SPEAR outperforms 320 

FLOR for the TC predictions over the WNP (75–79%), whereas SPEAR underperforms FLOR 321 

over the NA (33–38%) and ENP (23–26%) where the parentheses indicate the fraction of the 322 

number of variables that SPEAR outperforms FLOR relative to the total number of the 323 

variables. 324 

Similar trends are obtained for the comparisons between HiFLOR-S and HiFLOR 325 

(Supplementary Fig. 1). Generally, HiFLOR-S outperforms HiFLOR for the NA (60–62%), 326 

WNP (64–71%), but underperforms HiFLOR or comparable for the ENP (49%), where the 327 

parentheses indicate the fraction of the number of variables that HiFLOR-S outperforms 328 

HiFLOR. 329 

 330 
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 331 

FIG. 3 Scatterplots of RCOR between SPEAR prediction and observations (y-axis) and FLOR 332 
prediction and observations (x-axis) for the (a) NA, (b) WNP, and (c) ENP.  (d–f) As in (a–c), 333 
but for MSSS. A marker positioned above the diagonal line indicates that SPEAR exhibits 334 
higher skill than FLOR. The variables evaluated include basin-wide frequency of TCS, HUR, 335 
basin-wide values of ACE, PDI, and the landfalling TC frequency for the Continental United 336 
States (US), Caribbean Islands (CAR), and Hawaiian Islands (HI). Different colors represent 337 
different lead months (L0–L6). Percentages on the plots denote the fraction of variables in 338 
which SPEAR outperforms FLOR relative to the total number of variables evaluated. 339 
 340 

b. Retrospective Predictions of Landfalling and Regional TC Activity 341 

 Beyond the prediction skill of basin-wide TC variables, we evaluate prediction skill in 342 

regional TC activity in terms of landfall TCs (i.e., US, CAR, and HI) and the frequency of TC 343 

occurrence. 344 

 Supplementary Figs. 2 and 3 show results similar to Figs. 2 and 3, focusing exclusively 345 

on landfalling predictions (i.e., US, CAR, and HI). Regarding RCOR, SPEAR exhibits lower 346 

prediction skill for HI compared to FLOR across most lead-month predictions. For US and 347 

CAR, results are mixed: SPEAR outperforms FLOR in a few lead-month predictions (e.g., L3 348 

or L4). In terms of MSSS, no clear differences are observed between SPEAR and FLOR. 349 
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Figure 4 displays the prediction skill as measured by RCOR between L0 predictions by 350 

the models and observations for each grid cell. Both SPEAR and FLOR demonstrate 351 

statistically significant skill in the central Pacific for TCS, particularly around Hawaii, 352 

indicating their ability to predict the frequency of landfalling TCs over the Hawaiian Islands. 353 

SPEAR also exhibits improved prediction skill for TCS and HUR near Japan relative to FLOR 354 

(Figs. 4a,b,d,e). In contrast, SPEAR shows degraded prediction skill for landfalling storms 355 

over the NA relative to FLOR. HiFLOR-S shows comparable skill to HiFLOR in terms of 356 

C345 in the Pacific Ocean, but HiFLOR-S demonstrates degraded prediction skill over the NA 357 

(Figs. 4c, f). 358 

We counted the number of grids where the model shows statistically significant 359 

positive RCOR with observations (i.e., red and yellow shadings in Fig. 4). This number was 360 

then divided by the total number of valid grid cells where the observed frequency of 361 

occurrence is nonzero for at least 25% of years (i.e., seven years; all grids within the gray 362 

shading in Fig. 4). This fractional number is compared between the models on a global scale 363 

for each TC category and lead month (Fig. 5). Figure 5 indicates that SPEAR generally 364 

demonstrates a smaller area of skillful predictions for TCS and HUR relative to FLOR, 365 

although differences between HiFLOR-S and HiFLOR for C345 are marginal. Overall, we did 366 

not find clear improvements in prediction skill for TC activity at the regional scale with the 367 

new prediction system compared to the previous prediction system. 368 
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 369 

FIG. 4 Skill of frequency of occurrence of TCs during July–November 1992–2020 for the 370 
retrospective forecasts initialized in July. Shading indicates the retrospective RCOR of 371 
predicted versus observed TC frequency of occurrence (1°×1° grid box), masked at a two-372 
sided p=0.1 level. Results are shown for (a) TCS for SPEAR, (b) HUR for SPEAR, and (c) 373 
C345 for HiFLOR-S. (d–f) As in (a–c), bur for FLOR and HiFLOR. Gray shading in all panels 374 
indicates that observed TC density is nonzero for at least 25% of years (i.e., seven years). 375 
 376 

 377 

FIG. 5 Fractional number of grids with statistically significant positive RCOR between 378 
predictions and observations relative to the total number of valid grids on a global scale. Valid 379 
grids are defined as grids where the observed TC density is nonzero for at least 25% of the 380 
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years (i.e., seven years; gray areas in Fig. 4). Shown for (a) TCS for SPEAR and FLOR, (b) 381 
HUR for SPEAR and FLOR, and (c) C345 for HiFLOR-S and HiFLOR. 382 
 383 

c. Retrospective Predictions of Large-scale Variables 384 

 Previous studies have suggested that improving the simulation of large-scale variables 385 

could result in improved simulations of TC activity (Vecchi et al., 2014; Murakami et al., 386 

2015; Krishnamurthy et al., 2016). It is expected that improving prediction skill in large-scale 387 

variables should be linked to improving prediction skill in TC variables. However, this is not 388 

always the case. For example, Murakami et al. (2016a) revealed that the changes in prediction 389 

skill in large-scale variables are not always relevant to the changes in prediction skill in TC 390 

activity in the NA. To examine whether the differences in prediction skill in TC variables 391 

between the new and previous prediction systems, as shown in Section 3a,b are linked to the 392 

changes in prediction skill in large-scale variables, we compare the prediction skill in the TC-393 

relevant large-scale variables. 394 

 Figure 6 compares the RCOR and MSSS between the observed and predicted large-395 

scale variables in the key main development region for each basin by FLOR (x-axis) and 396 

between observed and predicted by SPEAR (y-axis). 397 

 398 
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FIG. 6 As in Fig. 3, but for large-scale variables over the main development regions. Variables 399 
evaluated (symbols in the bottom right) are ω500, Uy500, Vs, ζa850, RH600, MPI, and SST. 400 
 401 

For the NA, more than half of the variables are located above the diagonal lines, 402 

indicating improved skill in the large-scale variables in SPEAR over FLOR (Figs. 6a and d), 403 

although SPEAR showed lower skill in TC metrics than FLOR (Figs. 3a and d). These results 404 

are consistent with those of Murakami et al. (2016a), who reported that the improvements in 405 

predicting TC activity over the NA are not directly related to the improvements in predicting 406 

large-scale variables. In contrast, the WNP and ENP are relatively consistent between large-407 

scale variables and TC activity compared to the NA (Fig. 3 and Fig. 6). For the comparisons 408 

between HiFLOR-S and HiFLOR, differences in prediction skill for large-scale variables 409 

correspond well with differences in TC variables for RCOR (Supplementary Figs. 1 and 4). 410 

Here, we aim to identify the reasons for the discrepancies in prediction skill between 411 

TC-related variables and large-scale variables when comparing SPEAR and FLOR in the NA. 412 

Differences in TC prediction skill between these models may stem from differences in the 413 

simulations of TC climatology and/or differences in how TC climatology responds to large-414 

scale conditions. To start, we compared the spatial distributions of the climatological mean TC 415 

genesis frequency between observations and models, SPEAR and FLOR, in the NA (shadings 416 

in Fig. 7 and Table 2).  417 

This comparison reveals that differences in the predicted climatological mean TC 418 

genesis frequency between the models do not fully explain why FLOR exhibits better NA TC 419 

prediction skill than SPEAR. For example, observations show frequent TC genesis in both the 420 

eastern tropical Atlantic (Domain A) and the western tropical Atlantic (Domain B), with 421 

slightly higher TC genesis frequency in Domain B than in Domain A (Fig 7a and Table 2). 422 

However, both SPEAR and FLOR display notable biases in the mean locations of TC genesis 423 

(Figs. 7b, c), underestimating TC genesis frequency in Domain A and showing increased 424 

frequency in the central tropical Atlantic compared to observations.  425 

 426 
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 427 

FIG. 7 Climatological mean TC genesis frequency and the standard deviation of interannual 428 
variability during July–November for the period 1992–2020. (a) Observations, (b) lead-month 429 
1 predictions by SPEAR, and (c) lead-month 1 predictions by FLOR. Shadings represent the 430 
fraction of the climatological mean TC genesis frequency at each grid cell relative to the ocean 431 
basin total [Units: %]. Contours indicate the standard deviation of interannual variability, 432 
normalized by the climatological mean TC genesis frequency at each grid cell [Units: %]. Red 433 
rectangles highlight the main development regions, A and B. 434 
 435 

Table 2 Climatological mean TC genesis frequency and the amplitude of interannual variation 436 
of TC genesis frequency for Domains A and B. Displayed are the fraction of climatological 437 
mean TC genesis frequency (total TC genesis frequency within a domain divided by the basin-438 
total TC genesis frequency [%]) and the fraction of standard deviation relative to the 439 
climatological mean TC genesis frequency (standard deviation of interannual variation of total 440 
TC genesis frequency within a domain divided by the climatological mean TC genesis 441 
frequency for the same domain [%]). 442 
 443 

 Fraction of climatological mean 

TC genesis frequency over a 

domain relative to the basin-total 

TC genesis frequency [%] 

Fraction of standard deviation of 

interannual variation of TC 

genesis frequency relative to the 

climatological mean TC genesis 

frequency [%] 

Domain A Domain B Domain A Domain B 

Observations 34.2% 38.6% 81.3% 104.7% 

SPEAR 26.4% 35.4% 58.5% 50.6% 

FLOR 28.4% 42.8% 59.3% 60.4% 

 444 

On the other hand, substantial differences exist in the amplitude of interannual 445 

variation in TC genesis frequency between the models, which may further contribute to 446 

differences in TC prediction skill. For instance, observations show marked interannual 447 

variation in both Domains A and B, with the standard deviation exceeding 80% of the 448 

climatological mean TC genesis frequency (contours in Fig. 7 and Table 2). Although both 449 
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FLOR and SPEAR underestimate the amplitude of interannual variations in both domains, 450 

FLOR’s amplitude is closer to observed values than SPEAR’s, particularly in Domain B. 451 

Furthermore, FLOR simulates a more accurate sensitivity of TC genesis frequency to 452 

large-scale variables in both Domains A and B than SPEAR (Table 3). For example, 453 

observations indicate that TC genesis frequency in Domain A is more highly correlated with 454 

thermodynamical variables (e.g., RH600 and SST) than with dynamical variables (e.g., Vs and 455 

ζa850). Conversely, in Domain B, it is more highly correlated with dynamical variables than 456 

thermodynamical ones. Although the RCORS produced by both models differ notably from 457 

observations, FLOR captures these observed tendencies better than SPEAR.  458 

 459 

Table 3 RCORs of interannual variations between the TC genesis frequency and large-scale 460 
variables for each domain (1992–2020). The numbers in bold and underscore highlight the two 461 
highest correlations among the variables for each observation and model. 462 

 463 

 Vs ζa850 RH600 MPI SST 

Domain A 

Observations –0.24 +0.39 +0.56 +0.35 +0.42 

SPEAR –0.60 +0.52 +0.57 +0.82 +0.35 

FLOR –0.25 +0.33 +0.81 +0.83 +0.79 

Domain B 

Observations –0.43 +0.54 –0.11 –0.22 +0.00 

SPEAR –0.54 +0.89 +0.78 –0.31 +0.09 

FLOR –0.64 +0.90 –0.43 –0.32 +0.12 

 464 

Previous studies suggest that ENSO, Madden Julian Oscillation (MJO), and tropical 465 

upper-tropospheric troughs (TUTT) associated with extratropical Rossby wave breaking 466 

influence wind shear and low-level vorticity in Domain A, while the Atlantic Meridional Mode 467 

(AMM) affects SST and relative humidity in Domain B (e.g., Maloney and Hartmann 2000; 468 

Kossin and Vimont 2007; Wang et al. 2020). Differences in teleconnection patterns or the 469 

influence of interannual climate modes on atmospheric conditions between the models may 470 

contribute to the variations in TC seasonal prediction skill in the NA. 471 

 With its higher horizontal resolution, HiFLOR-S is expected to outperform SPEAR in 472 

predicting TC variables, especially in intense storms such as C345. However, since the 473 

HiFLOR-S predictions were forced with SSTs predicted by SPEAR, differences in TC 474 
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predictions between SPEAR and HiFLOR-S likely result from differences in the response of 475 

model-simulated TCs or large-scale variables to the same SSTs. Supplementary Figs. 5 and 6 476 

display the same plots as Figs. 3 and 6, respectively, but for the comparisons between 477 

HiFLOR-S and SPEAR. Generally, the prediction skill differences between SPEAR and 478 

HiFLOR-S for TC variables do not align with those for large-scale variables except in the 479 

WNP. For example, the prediction skill of large-scale variables is lower (higher) in HiFLOR-S 480 

than in SPEAR in the NA (ENP). However, these skill differences in large-scale variables do 481 

not correspond to those of TC variables (Supplementary Fig. 5); HiFLOR-S generally 482 

outperforms (underperforms) SPEAR for TC variables in the NA (ENP). This finding 483 

reinforces the notion that higher prediction skill in large-scale variables do not necessarily lead 484 

to higher prediction skill in TC variables. 485 

We compared the spatial pattern of the climatological mean TC genesis frequency and 486 

interannual variations between SPEAR and HiFLOR-S for L3 predictions, where HiFLOR-S 487 

outperforms better than SPEAR in TC predictions for the NA. Supplementary Fig. 7 indicates 488 

that HiFLOR-S has a less accurate spatial pattern of climatological TC genesis frequency than 489 

SPEAR. Specifically, TC genesis frequency in HiFLOR-S is heavily concentrated around the 490 

central tropical Atlantic, with a higher genesis frequency in Domain A than in Domain B 491 

(Supplementary Table 1). This again suggests that differences in climatological TC genesis 492 

frequency alone do not fully explain the variations in TC prediction skill. Meanwhile, the 493 

amplitude of interannual variation in TC genesis frequency in Domain B is larger and more 494 

aligned with observations in HiFLOR-S compared to SPEAR (Supplementary Table 1). 495 

Additionally, the RCORs of interannual variations between TC genesis frequency and large-496 

scale variables are more accurate in HiFLOR-S than SPEAR for both Domains A and B 497 

(Supplementary Table 2). 498 

Overall, these results emphasize that differences in TC predictions between models 499 

likely stem from biases in the models’ sensitivity of TCs to large-scale variables, as well as 500 

biases in the amplitude of interannual variation in TC genesis frequency across the main 501 

development regions. This underscores that even when a model accurately predicts large-scale 502 

variables, its TC predictions could still be inaccurate. 503 

 504 

d. Difference in 2023 summer predictions between SPEAR and HiFLOR-S 505 
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 When we conducted real-time seasonal predictions for the summer of 2023, a notable 506 

discrepancy between SPEAR and HiFLOR-S in the TC predictions became apparent. The 507 

2023 summer season was characterized by a strong El Niño development and warmer-than-508 

average tropical North Atlantic (Fig. 8a). It is empirically known that, during El Niño 509 

developing summers, TCs are less active than normal over the NA due to strong vertical shears 510 

(e.g., Goldenberg et al., 1996; Smith et al., 2010). In contrast, previous studies have revealed 511 

that warmer tropical Atlantic conditions could lead to active TC seasons in the NA (e.g., 512 

Vecchi et al., 2011; Villarini et al., 2010; Murakami et al., 2018). Therefore, these 513 

contradicting SST conditions could result in either an active or inactive TC season in the NA. 514 

As revealed in Figs. 8b,c, SPEAR accurately predicted the observed SST anomaly, 515 

even from the April 2023 initial predictions. Figure 8d highlights marked differences in the 516 

TCS predictions between SPEAR and HiFLOR-S. Until the May initial predictions, SPEAR 517 

predicted, in the ensemble mean, approximately 12 TCSs, whereas HiFLOR-S predicted 518 

around 17 TCSs. The observed TCS count was 17 in 2023, indicating that the HiFLOR-S 519 

predictions were more accurate than the SPEAR predictions. SPEAR adjusted its predictions 520 

to reflect a more active TC season from the June and July initial predictions compared to the 521 

previous month's predictions (Fig. 8d). 522 

 523 
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 524 

FIG. 8 Observed and predicted SST anomaly and TCS frequency over the NA during July–525 
November 2023. (a) Observed 2023 SST anomaly, predicted 2023 SST anomaly from (b) 526 
April and (c) July initial conditions by SPEAR, and (d) Observed and predicted TCS 527 
frequency over the NA for each lead month prediction by SPEAR and HiFLOR-S. Shadings 528 
and contours in (a)–(c) represent SST anomalies and climatological mean SSTs, respectively. 529 
The dashed red line in (d) represents the 2023 observed TCS frequency, while the dashed blue 530 
line represents the observed climatological mean TCS frequency. Blue solid lines in (d) 531 
indicate the range of ±1σ of the observed interannual variation. The red squares in (d) 532 
represent the ensemble mean values, whereas the dots represent values for each ensemble 533 
member. The boxes in (d) represent the lower and upper quartiles, with the horizontal lines 534 
showing the median value and the end lines showing the lowest datum still within the 1.5 535 
interquartile range (IQR) of the lower quartile and the highest datum still within the 1.5 IQR 536 
of the upper quartile. 537 
  538 

To assess the relative influence of the 2023 El Niño and warmer Atlantic SSTs on TCS 539 

frequency in the NA, we conducted idealized real-time attribution experiments using SPEAR 540 

and HiFLOR-S (Murakami et al., 2017, 2018; Qian et al., 2019; Nasuno et al., 2022). Similar 541 

to the HiFLOR-S predictions, we performed predictions using SPEAR and HiFLOR-S, which 542 

were forced with the predicted SSTs derived from the real-time 2023 April initial predictions 543 

by SPEAR but with some modifications. We conducted 15-member ensemble experiments 544 
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from the 15-member SSTs predicted by SPEAR. Specifically, we replaced the SSTs over the 545 

tropical Pacific with climatological mean values to eliminate the 2023 El Niño conditions, 546 

denoted as the TPACCLIM experiment (Fig. 9b). Similarly, we removed the anomalously 547 

warm tropical Atlantic conditions, referred to as the MDRCLIM experiment (Fig. 9c). These 548 

experiments were compared with those using the original 2023 predicted SSTs, termed the 549 

SSTA2023 experiment (Fig. 9a), and the climatological man SSTs, termed the CLIM 550 

experiment. 551 

 552 

FIG. 9 Prescribed idealized SST anomaly (SSTA) and simulated anomaly of TC frequency of 553 
occurrence. Idealized seasonal predictions are conducted by prescribing the idealized SSTs in 554 
which SSTAs (left panels; units: K) are superimposed onto the climatological mean SST 555 
(CLIM). The resultant predicted TC frequency of occurrence anomalies relative to the CLIM 556 
experiment are shown by the shading in the middle- and right-hand panels (units: number per 557 
season every 5º×5º grid cell). The prescribed SSTAs are (a) all 2023 anomalies (SSTA2023); 558 
(b) as in SSTA2023, except the tropical Pacific SSTAs are set to zero (TPACCLIM); (c) as in 559 
SSTA2023, except the tropical Atlantic SSTAs are set to zero (MDRCLIM). Dots in the 560 
middle- and right-hand panels indicate the predicted change relative to the CLIM experiment 561 
is statistically significant at the 95% confidence level or above by a bootstrap method. The 562 
numbers in (b) and (c) denote fractional changes in TCS frequency relative to the SSTA2023 563 
experiments. 564 
 565 
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Because El Niño conditions are expected to suppress TC activity in the NA, removing 566 

the 2023 El Niño through the TPACCLIM experiments is expected to result in more TCS 567 

frequency in the NA than in the SSTA2023 experiments. Likewise, removing the tropical 568 

Atlantic SST anomaly through the MDRCLIM experiments is expected to result in lower TCS 569 

frequency than in the SSTA2023 experiments. As expected, TCS frequency increases by about 570 

64% in the SPEAR TPACCLIM experiments relative to the SSTA2023 experiments (Fig. 9b). 571 

In contrast, TCS frequency decreases by about 37% in the SPEAR MDRCLIM experiments 572 

(Fig. 9c). These magnitudes of the changes indicate that SPEAR is more sensitive to the El 573 

Niño condition than the tropical Atlantic SST for the TC activity in the NA. Meanwhile, TCS 574 

frequency increases by about 44% in the HiFLOR-S TPACCLIM experiments (Fig. 9b). 575 

However, the magnitude of the change is less than in the MDRCLIM experiments, in which 576 

TCS frequency was decreased by 55% (Fig. 9c). Therefore, in contrast to SPEAR, HiFLOR-S 577 

is more sensitive to the tropical Atlantic SST than the El Niño condition for TC activity in the 578 

NA. 579 

Figure 10 illustrates the RCORs between Niño-3.4 SST and TC metrics in the NA 580 

compared with the RCORs between MDR SST and TC metrics for the observations and the 581 

retrospective seasonal predictions by SPEAR and HiFLOR-S during 1992–2020. Observations 582 

reveal that RCORs for most TC metrics other than US are around +0.4 with MDR SST and 583 

+0.5 with Niño-3.4 SST with a flipped sign (Fig. 10a). The April initial predictions by SPEAR 584 

(orange marks in Fig. 10b) reveal RCORs around +0.2 with MDR SST and +0.65 with Niño-585 

3.4 SST with a flipped sign, indicating SPEAR is more sensitive to Niño-3.4 SST than MDR 586 

SST for NA TC variables compared to the observations. In contrast, those by HiFLOR-S 587 

(orange marks in Fig. 10c) show RCORs around +0.4 with MDR SST and +0.5 with Niño-3.4 588 

with a flipped sign, closer to the observations than SPEAR. It is noted that shorter lead month 589 

predictions from SPEAR (e.g., red marks of L0) are relatively closer to the observations and 590 

HiFLOR-S than the longer lead month predictions (e.g., black marks of L4). These results are 591 

consistent with the 2023 summer predictions (blue plots in Fig. 8d), in which SPEAR changed 592 

to predict a more active season in the shorter lead month predictions than the longer lead 593 

month predictions. These results highlight that even given the same SST conditions, models 594 

would respond differently to the SST, resulting in different TC predictions. 595 
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 596 

FIG. 10 Scatterplots of RCORs between TC variables and MDR SST (y-axis) and TC 597 
variables and Niño-3.4 SST with the reversed sign (x-axis) for the NA TC activity. (a) 598 
Observations from 1992–2020. Markers above the diagonal lines indicate a stronger 599 
relationship with the MDR SST compared with the Niño-3.4 SST. (b) Retrospective seasonal 600 
predictions by SPEAR and (c) HiFLOR-S during 1992–2020. Different colors indicate 601 
different lead month predictions (L0–L6). Evaluated TC variables are the same as those in Fig. 602 
3. 603 
 604 

4. Summary 605 

In this study, we evaluated the skill of retrospective seasonal predictions of TC activity 606 

using the new seasonal prediction system (SPEAR and HiFLOR-S) compared to the previous 607 

seasonal prediction system (FLOR and HiFLOR) developed at GFDL. Our analysis focused 608 

on predicting various aspects of TC activity, including basin-wide frequency of different 609 

categories of TC intensity, ACE, PDI, and landfalling TCs. Additionally, we examined relevant 610 

large-scale variables from July–November across the NA, WNP, and ENP ocean basins. 611 

SPEAR consistently demonstrates skillful predictions of TC activity across the three 612 

ocean basins. Regarding basin-wide TC frequency, SPEAR exhibits statistically significant 613 

rank correlation skill up to lead month 4 (i.e., March initial conditions), with rank correlation 614 

coefficients ranging from +0.4 to +0.6 for the NA, +0.4 to +0.5 for the WNP, and +0.4 to +0.8 615 

for the ENP. However, when compared to FLOR, SPEAR yields comparable or lower skill in 616 

TC activity for the NA and ENP but exhibits higher skill for the WNP. Similarly, like 617 

HiFLOR, HiFLOR-S demonstrates statistically significant rank correlation skill in predicting 618 

major hurricanes in the NA, even from April's initial predictions, with rank correlation 619 

coefficients ranging from +0.4 to +0.6. HiFLOR-S generally exhibits higher skill in TC 620 

activity for the NA and WNP but demonstrates comparable skill in the ENP compared to 621 
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HiFLOR. Our analysis also indicates that the multi-model ensemble mean can sometimes 622 

outperform individual model predictions, underscoring the potential for enhancing prediction 623 

skill by integrating multiple models. 624 

We further examined the prediction skill of regional TC activity in terms of TC 625 

frequency of occurrence and landfalling storms. SPEAR generally underperforms FLOR in 626 

landfall predictions in the coastal areas of the U.S., Caribbean islands, and Hawaii. While 627 

SPEAR exhibited smaller areas of skillful predictions of regional TC activity compared to 628 

FLOR, SPEAR exhibited skillful predictions of regional TC activity near Japan. This suggests 629 

skillful landfalling TC predictions in the region. 630 

We assessed prediction skill in TC-relevant large-scale variables to determine whether 631 

the different prediction skill in TC variables between the previous and new prediction systems 632 

could be attributed to differences in prediction skill in large-scale variables. However, this 633 

analysis revealed that the two do not always correspond, particularly for the NA, which aligns 634 

with findings from previous studies (e.g., Murakami et al., 2016a). Further analysis indicated 635 

that the amplitude of interannual variations in TC genesis frequency plays a crucial role in 636 

prediction skill. Moreover, the sensitivity of TCs to large-scale parameters varies by region. 637 

For instance, TC genesis frequency over the eastern tropical NA is more sensitive to 638 

thermodynamical variables than to dynamical variables, while the opposite is true for the 639 

western tropical NA. Accurately simulating these sensitivities is key to improving TC 640 

prediction. 641 

Through idealized and retrospective seasonal predictions, SPEAR demonstrates greater 642 

sensitivity to El Niño conditions, while HiFLOR-S shows less sensitivity to El Niño compared 643 

to warmer SSTs in the MDR for predicting NA TC variables. This sensitivity discrepancy 644 

resulted in conflicting TC predictions for the 2023 summer season when both El Niño 645 

conditions and warmer MDR SSTs in the NA were predicted simultaneously. This underscores 646 

the importance of not only improving the prediction skill of SSTs themselves but also 647 

enhancing the model’s response of TCs to such large-scale conditions like SSTs to achieve 648 

further improvement in TC prediction skill at a seasonal time scale. 649 
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