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AT M O S P H E R I C  S C I E N C E

Projected increase in the frequency of extremely active 
Atlantic hurricane seasons
Hosmay Lopez1*, Sang-Ki Lee1, Robert West1,2, Dongmin Kim1,2, Gregory R. Foltz1,  
Ghassan J. Alaka  Jr.1, Hiroyuki Murakami3

Future changes to the year-to-year swings between active and inactive North Atlantic tropical cyclone (TC) sea-
sons have received little attention, yet may have great societal implications in areas prone to hurricane landfalls. 
This work investigates past and future changes in North Atlantic TC activity, focusing on interannual variability 
and evaluating the contributions from anthropogenic forcing. We show that interannual variability of Atlantic TC 
activity has already increased, evidenced by an increase in the occurrence of both extremely active and inactive 
TC seasons. TC-resolving general circulation models project a 36% increase in the variance of North Atlantic TC 
activity, measured by accumulated cyclone energy, by the middle of the 21st century. These changes are the result 
of increased variability in vertical wind shear and atmospheric stability, in response to enhanced Pacific-to-
Atlantic interbasin sea surface temperature variations. Robust anthropogenic-forced intensification in the vari-
ability of Atlantic TC activity will continue in the future, with important implications for emergency planning and 
societal preparedness.

INTRODUCTION
Tropical cyclones (TCs) are among the most deadly and costly 
natural disasters that affect the US [National Oceanic and Atmo-
spheric Administration (NOAA)/National Weather Service Natural 
Hazard Statistics, 2021) and many other countries each year. Hence, 
the scientific community has placed great efforts not only in im-
proving their predictions, but also in understanding how global 
and regional TC activity have changed and will continue to change 
under anthropogenic forcing. For example, while there is a pro-
jected 13% decrease in global TC frequency, TCs are projected to 
become around 5% more intense in most global climate models 
(1–5), indicating that greenhouse warming will shift global TCs 
toward stronger storms (6). Recent studies argue that changes in 
TC activity are detectable in the present day (7, 8), with external 
anthropogenic effects having already emerged over natural variability 
(9). However, separating natural and anthropogenic modulations 
remains a challenge (7).

While global TC activity have shown a decreasing trend (10), 
the North Atlantic basin has experienced a pronounced increase 
in the number of TCs and accumulated cyclone energy (ACE) over 
the past 50 years. Previous studies reported that these increases in 
the North Atlantic could be associated with changes in anthropogenic 
aerosols (11). In addition, observational trends in TC activity, spe-
cifically TC intensity, could also be influenced by artificial trends 
owing to the evolution of observing systems (12–14). For example, 
there has been an increase in the frequency of short-lived storms 
(<2 days) since around the year 2000, a fact that has been shown to be 
artificially created by the inhomogeneity in the observing systems 
and improvements in observational capabilities (15, 16). However, 
these short-duration storms have little to no impact on seasonal 
ACE; thus, ACE records should be relatively reliable from 1970 on-
ward, thanks to the combination of Dvorak satellite estimates and 

aircraft reconnaissance flights. In addition, it is difficult to distin-
guish between trends driven by external forcing [e.g., anthropogenic 
climate change (ACC)] and those driven by internal climate vari-
ability such as the Atlantic multidecadal oscillation (AMO) (17, 18) 
or the Interdecadal Pacific Oscillation (19–22). This is due to the 
fact that the year-to-year TC variability is much larger than the ob-
served and/or projected future trends. That is, the projected changes 
in TC climatology are much smaller than the observed internal 
variability of seasonal TC activity: A 2°C global mean temperature 
increase results in a North Atlantic TC frequency decrease of 15%, 
or about 2 TCs per year (23), while the year-to-year variability in 
the number of named storms is much higher (e.g., 28 named storms 
in 2005, 8 in 2014, and 30 in 2020), corresponding to a SD of 5 TCs. 
Despite these large year-to-year fluctuations, future changes in TC 
variance are rarely investigated in detail, resulting in considerable 
uncertainty in climate projections of TC activity and landfalls (23).

In the North Atlantic basin, TCs frequently develop during June-
November between 10°N-20°N and 60°W-20°W, an area known as the 
main development region (MDR) (24, 25). While the genesis of a spe-
cific TC is strongly dependent on short-term atmospheric variability, 
e.g., African easterly waves (26) and intraseasonal variability, e.g., con-
vectively coupled Kelvin waves and the Madden-Julian oscillation 
(27, 28), interannual and longer-term modulations of TC frequency are 
influenced by slowly varying local and remote ocean-atmosphere in-
teractions. For example, on interannual timescales, the Atlantic warm 
pool and Atlantic Meridional Mode modulate sea surface temperature 
(SST) variability in the tropical North Atlantic and Intra-Americas Sea 
via anomalous surface heat flux (29–31) and wind-evaporation-SST 
feedback (32). Therefore, these SST modes are highly correlated with 
Atlantic TC activity on interannual timescales (33, 34).

Forcing from remote regions is also an important modulator of 
Atlantic TC activity (35–39). For example, tropical Pacific SST anoma-
lies (SSTAs) linked to the El Niño–Southern Oscillation (ENSO) are 
a major driver of interannual TC activity and are therefore often 
used as a seasonal predictor for TC activity in the Atlantic basin. 
Specifically, the positive phase of ENSO (El Niño) warms the tropical 
troposphere (40), reducing atmospheric convection and increasing 
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vertical wind shear over the Caribbean and Gulf of Mexico and 
consequently reducing Atlantic TC activity (41–46). Thus, the in-
terbasin SST difference between the tropical North Atlantic (MDR) 
and tropical Pacific has been identified to modulate seasonal Atlantic 
TC activity (47–51) and TC maximum potential intensity (49, 52) 
in the Atlantic basin.

Given that seasonal TC activity in the North Atlantic is largely 
modulated by the difference in SSTAs between tropical Atlantic and 
Pacific basins (47–54), a projected increase in the interannual vari-
ability of ENSO (55) and tropical North Atlantic SST (56) suggests 
an increase in the interannual variability of the future interbasin 
SST difference and hence North Atlantic TC activity. However, fu-
ture projections of ENSO and its remote effects are still uncertain 
due to model biases (57, 58). A recent work (59) used idealized SST-
forced model experiments to investigate how extremes in seasonal 
Atlantic TC activity may change due to the joint effects of ENSO 
and the Atlantic Meridional Mode and found that extremely active 
seasons becomes more common under anthropogenic effects, with 
greater TC number and a shift to stronger TCs. While these results 
are based on a single SST-forced model, without air-sea feedbacks, it 
highlights the importance of considering changes in the mean and 
interannual climate variability influencing TC activity. The primary 
objective of this work is to determine whether there have been 
changes in interannual variations of TC activity and if so, whether 
they will continue into the future. These questions are motivated by 
two premises: (i) Future changes in the variance of TC activity may 
have a greater societal impact than the change in the mean and (ii) 
interannual variability of dominant climate drivers (e.g., ENSO and 
tropical Atlantic SST) that modulates North Atlantic TC activity is 
projected to increase. Thus, we hypothesize that interannual vari-
ability of North Atlantic TC activity will intensify as a result of the 
enhanced interbasin SST variations in the future. Consequently, ex-
tremely active seasons (e.g., 2005 and 2020) and inactive seasons 
(e.g., 2014) will become more common with remarkable socioeco-
nomic implications. For the remainder of this paper, TC activity 
refers exclusively to that of the North Atlantic basin.

RESULTS
Observed changes in the mean and interannual variability
The observed changes in TC activity in the North Atlantic basin are 
analyzed on the basis of the number of TCs and ACE, excluding the 
short-lived storms (<2 days; see Materials and Methods) to avoid 
artificial trends due to changes in the observing system. While TC 
observations for the Atlantic date back to the 1800s, the 1970 to 
2023 analysis period is chosen here to avoid missing TCs due to 
observational limitations prior to the satellite era, before 1966 
(12, 60). Consistent with earlier studies (9, 61), both ACE and the 
number of TCs have increased at a rate of 16.9 ± 9.1 × 104 kt2 per 
decade for the former (Fig. 1A) and 1.36 ± 0.58 per decade for the 
latter (Fig. 1B). Since ACE is an integration of multiple factors, e.g., 
TC number, lifetime, and intensity, it is worth investigating their 
relative contribution to the observed mean and variance changes of 
ACE (see the Supplementary Materials). About 83% of the trend in 
seasonal ACE is explained by a trend in TC number–induced ACE 
(14.03 ± 4.96 × 104 kt2 per decade), whereas only 6% of the trend 
in seasonal ACE is explained by a trend in lifetime-induced 
(0.99 ± 3.56 × 104 kt2 per decade) and 11% is explained by intensity-
induced (1.94 ± 3.63 × 104 kt2 per decade) ACE. That is, most of the 

observed trends in ACE can be attributed to an increase in TC 
number. In contrast, observed trends in lifetime and intensity are 
not statistically significant (table S1 and fig. S1).

The 20-year running average standard deviation also shows sub-
stantial increases in the interannual variability of ACE and the number 
of TCs. Specifically, a statistically significant upward trend is found in 
the interannual standard deviation of both ACE (3.80 ± 0.84 × 104 kt2 
per decade; Fig. 1C) and the number of TCs (0.40 ± 0.03 per decade; 
Fig. 1D). While the ACE and TC number trends are positive for the 
observed period, it is worth noting that the behavior is more of a 
regime change, with enhanced interannual variability in the later 
period, a feature that has been documented as a switch between the 
inactive and active era, which coincided with a shift from a negative to 
a positive phase of the AMO (17, 18), as well as a reduction in anthro-
pogenic aerosols (9, 11). A variance ratio analysis for the relevant SST 
indices that are known to influence ACE shows that the variability over 
the Niño3 region has increased by about 12% since 1995, whereas the 
SST variance over the MDR has increased by about 27% in the same 
period, all consistent with the increase in ACE and TC number vari-
ability observed since 1995.

These results pose the question: Is the recent increase in ACE and 
the number of TCs due to a mean increase in TC activity, i.e., an in-
crease in the median with little change in the tails (Fig. 1, A and B), 
and/or due to an increase in the observed interannual variability of 
TC activity, i.e., more extreme seasons (Fig. 1, C and D)? This ques-
tion is tackled by splitting the observed period into early and recent 
periods, ranging from 1970 to 1994 and 1995 to 2023, respectively. 
This separation is motivated by the observed upward trends in TC 
activity and interannual variability. It is found that the variance ratio 
for the later versus the earlier period ranges from 2.30 to 2.75 for 
ACE and 2.60 to 2.81 for the TC number, where the ranges are ob-
tained by testing the robustness of the cutoff point by shifting the 
computation by 5 years back and forward centered at the two peri-
ods. This is done given that the shift in TC activity could be influ-
enced by natural decadal variability and the choice of the cutoff point 
(17–21). As shown, the results are robust and independent of the 
choice of time window, which are showing a significant increase in 
variance at 95th percentile based on an F test.

A probability density functions (PDFs) of observed ACE and TC 
number are modeled by a stochastically generated skewed (SGS) 
distribution (62, 63) (see Materials and Methods, table S2, and fig. S2 
for details on the choice of distribution and goodness-of-fit analysis). 
Figure 1 (E and F) shows the observed SGS distributions for ACE 
and TC number, respectively. Four different parameter configura-
tions are used to construct the PDFs, using statistical moments de-
rived from: (i) the early period, (ii) early period plus observed mean 
changes only, (iii) early period plus observed variance changes only, 
and (iv) recent period, which includes mean plus variance changes. 
Note that the observed increases in ACE and TC number are ex-
plained by increases in the mean, whereas the broadening of the 
PDF due to increased interannual variability is responsible for more 
extreme seasons (Fig. 1, E and F). While the mean increase is large 
and statistically significant, the increase in interannual variability 
also appears to contribute to the occurrence of extreme TC activity 
seasons since 1995, such as the extremely active 2005 and inactive 
2014 seasons. The return periods for such extreme seasons are com-
puted directly from these SGS PDFs and are shown in table S3. Ex-
tremely active seasons, such as the 2005 season with greater than 18 
named storms are rarely expected to occur in the early period 
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(1970–1994), with a return period of greater than 1000 years. How-
ever, such extreme seasons become increasingly common when ac-
counting for mean changes (every 168 ± 31 years), variance changes 
(every 41  ±  5 years), and both mean and variance changes (every 
21 ± 2 years). Similar results are obtained for the return period of the 
extreme ACE observed in 2005 (245 × 104 kt2; table S3). Note that the 
increase in variance is responsible for a larger reduction in the return 
period of high impact TC seasons like 2005 (i.e., they happen more 
frequently) than the increase in the mean.

Regarding extremely quiescent seasons like 2014, which had only 
eight named storms (6 TCs with greater than 2-day lifetime), the 
return period during 1970 to 1994 was about 20 ± 8 years. If only 
the mean changes are accounted for, the return period increases 
to more than 1000 years. However, such an event becomes more 
common, occurring every 4 ± 1 years, if only the variance changes 
are considered, and less common, occurring every 14 ± 4 years, if 
both the mean and variance changes are accounted for (e.g., the 
recent period). Similarly, the return period of low ACE values (e.g., 
66.7 × 104 kt2 as in 2014) is shortened (i.e., more common) when 
accounting for variance changes. In summary, changes in interannual 

variability have played a dominant role in determining the occur-
rence of the extremely active and extremely inactive TC seasons 
observed since 1995. Hence, increases in the mean and interannual 
variability have had a compounding (opposing) effect on the occur-
rence of active (inactive) TC seasons.

Future projections—Direct detection from HighResMIP
Is the observed increase in interannual variability, and thus occur-
rence of extremely active and inactive TC seasons, projected to con-
tinue due to anthropogenic effects? To address this question, here, we 
examine future projections of TC activity based on direct detection 
of TCs from uncoupled and fully coupled models of the High-
Resolution Model Intercomparison Project [HighResMIP, (64)]. The 
atmospheric components of the selected models have resolutions of 
approximately 50 km or higher, allowing for explicit simulation of 
hurricanes (65). These model runs followed the Shared Socioeco-
nomic Pathways (SSP5.8.5) emission protocol and were integrated 
from 1950 to 2050. See Materials and Methods and table S4 for mod-
el details. TCs are detected by two fundamentally different tracking 
algorithms (see Materials and Methods).

Fig. 1. Observed time series of Atlantic TC activity. (A) Accumulated cyclone energy (ACE; 104 kt2) and (B) number of TC from 1970 to 2023. The black line corresponds 
to the linear trend with value shown in the top-left depicting the decadal trend plus/minus its 95% confidence interval. (C) Twenty-year running averaged SD of ACE 
centered at the year labeled in the abscissa. For example, the SD around the year 2000 corresponds to the period of 1990 to 2009. The early period (i.e., 1970–1994) and 
recent period (i.e., 1995–2023) are denoted by blue and red lines, respectively. (D) Same as (C) but for number of TCs. (E) Stochastically generated skewed (SGS) probabil-
ity density function (PDF) of ACE for different parameter sets (see Materials and Methods) obtained from: early period (solid blue), early period plus accounting for mean 
change only (dash-red), early period plus accounting for variance change only (dot-dot-dash red), and recent period (solid-red). (F) is similar to (E) but for TC numbers.

D
ow

nloaded from
 https://w

w
w

.science.org on N
ovem

ber 15, 2024



Lopez et al., Sci. Adv. 10, eadq7856 (2024)     15 November 2024

S c i e n c e  A d v an  c e s  |  R e s e ar  c h  A r t i c l e

4 of 13

Before evaluating future changes in SST variability, we verify if the 
observed relationship between ACE and SST is reproduced in the 
HighResMIP models for the historical period. Note that while both 
coupled and uncoupled models are able to reproduce the observed 
interbasin SST contrast (cold Pacific–warm Atlantic), the uncoupled 
simulations perform better, especially in depicting the amplitude of 
the SST signal (fig. S3). The coupled (uncoupled) simulations show a 
weaker (stronger) ACE-SST relationship relative to observations, 
most notably in the ACE-tropical Pacific SST relationship. While the 
coupled models tend to have larger biases than their uncoupled 
counterparts (65–67), the uncoupled models tend to overestimate 
the ACE-SST relationship due to the lack of negative feedback from 
TC interactions with the ocean (64). However, the Atlantic ACE-SST 
correlation is well represented in the ensemble mean. In addition, the 
spatial correlation is fairly high for most models (r > 0.6), and the 
root mean square errors are small and unsaturated for all ensembles, 
thus adding confidence that the HighResMIP represents very well 
the ACE-SST relationship.

Most HighResMIP models show the correct sign of increasing 
variances in ACE and TC number (fig. S4) but tend to underesti-
mate the observed trends in interannual variability for the 1970 to 
2023 period (Fig. 1, C and D). Analysis of projected changes in in-
terannual variability of ACE and TC number for these HighResMIP 
model runs is performed for two separate periods: 1970 to 2019 
(hereafter historical period) and 2020 to 2049 (hereafter future pe-
riod). Figure 2 shows the projected changes in interannual variabil-
ity of ACE (Fig. 2A) and TC number (Fig. 2B) as measured by the 
variance ratio of future versus historical periods. The analysis is fur-
ther divided by those models that depict the “correct” versus 
“incorrect” observed positive variability trend (fig. S4). Note that most 
models show a notable increase in the variance of ACE. Since the 
variance ratio is computed for each individual model, it is an unbi-
ased estimate of projected changes in future activity relative to the 
historical period. The majority of the models show an increase in 
future variability relative to historical period. Specifically, the multi-
model mean consensus is a 36 ± 17% increase in ACE variability, 
which is significant at the 95% confidence level based on a boot-
strapping technique (see Materials and Methods). Results for TC 
number are similar, with the majority of the models depicting an 
increase in interannual variability: The ensemble mean increases by 
19 ± 11%, also significant at the 95% confidence level. In addition, 
the models depicting the correct sign of the observed trend (red 
marks in Fig. 2) show a further increase in the future to historical 
variance ratio of 52 ± 18% for ACE and 38 ± 14% for TC number, 
whereas those models that show the incorrect trends (blue marks in 
Fig. 2) show a slight reduction in future variance that is not statisti-
cally significant. It is worth noting that the increase in variance is 
considerably larger than the projected mean changes for ACE and 
TC number (table S5).

The analysis of decomposing ACE into its three constituents (TC 
number, lifetime, and intensity) is repeated for the HighResMIP. In 
all, while all three components contribute to a projected increase in 
ACE variance, TC number is the primary reason for the projected 
changes in interannual variability of ACE (fig. S5). Separating the 
variance ratio analysis by tracking algorithm (fig. S6) shows that TC 
number is more dependent on the algorithm used than ACE, driven 
by discrepancies in the number of TCs detected by each tracking 
algorithm, i.e., more weak storms detected in the TRACK versus 
the TempestExtremes (68). It is also known that ACE is a more 

robust measure of TC interannual variability than TC number 
(69, 70). Nevertheless, overall, both detection algorithms consis-
tently show future increases in interannual variability of ACE and 
TC number (fig. S6).

The HighResMIP contains both coupled and uncoupled (i.e., 
SST-prescribed) runs (64). Each has advantages and disadvantages. 
While the coupled runs better represent important air-sea interac-
tions relevant to TC activity, they tend to produce weaker storms 
due to negative feedback from TC interactions with the ocean (64) 
and generally have inherently larger biases than the prescribed runs. 
On the other hand, the uncoupled runs in the HighResMIP proto-
col do not include changes in interannual variability of SSTs for fu-
ture projections. This is a noteworthy caveat that substantially 
diminishes the utility of the uncoupled simulations for the purpose 
of this study because projected changes in ENSO and MDR SST 
variability are not accounted for, and only the mean SST changes 
from Coupled Model Intercomparison Project version 6 (CMIP6) 
future projections are prescribed (64). However, we choose to ana-
lyze the uncoupled runs as they usually contain smaller biases than 
their coupled counterparts (64, 66, 67) and to add ensemble size for 
increased degrees of freedom. The uncoupled runs also provide an 
estimate of the TC variance changes unrelated to the SST interan-
nual variability, such as mean SST changes and internal atmospher-
ic mean and variance (e.g., potential intensity modulations).

Thus, it is worth separating the analysis into coupled and pre-
scribed SST runs. Both sets show an increase in variability, although 
the uncoupled runs have larger variance increase of ACE than the 
coupled runs (fig. S6). More specifically, in the prescribed runs, an 
ENSO event of similar amplitude would produce a stronger telecon-
nection to the MDR in the future compared to the historical period 
since the tropical mean state is much more convective in the future 
in CMIP6, i.e., El Niño–like mean state (55, 71). We also quantify 
the percent of models that shows an increase, statistically significant 
increase, decrease, and statistically significant decrease in interan-
nual variability for the projected period (2020–2049) relative to the 
observed period (1970–2019) for ACE and TC number (table S6). 
Substantially more models suggest a projected variance increase in-
dependently of coupling, although this is more robust in the un-
coupled runs. With that said, it is not possible to attribute specific 
causes of the discrepancies between coupled and uncoupled runs 
(e.g., coupling biases and mean state changes), and their contribu-
tion to internal atmospheric dynamics relevant to TC variations, 
without performing dedicated model experiments. It is worth not-
ing that the coupled models underrepresent the observed ACE-SST 
relationship, most notably the tropical Pacific SSTs, potentially re-
ducing the role of projected ENSO variance increase (55) and its 
Atlantic TC modulations (fig. S3). For the Atlantic basin as a whole, 
changes in the interannual variability of TC activity are greater than 
changes in mean activity, arguing for more extreme swings between 
active and inactive hurricane seasons and highlighting the impor-
tance of variability changes in future projections.

While the discussion in this work is centered on changes in inter-
annual variability of ACE, it is worth assessing the spatial structure of 
TC activity pertaining to both mean and interannual variability. Note 
that the HighResMIP is able to reproduce the observed spatial distri-
bution of TC activity (see Materials and Methods and figs. S3, S7, and 
S8 for further discussion on strengths and weaknesses of these mod-
els). Figure 3 describes the future projected changes in mean TC ac-
tivity and its interannual variability relative to the historical period 
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from HighResMIP. Note the dipole structure of the projected chang-
es in mean TC track density (Fig. 3A) and genesis location (Fig. 3C), 
with increased activity over the Atlantic and a reduction in activity in 
the Caribbean Sea. The dipole structure shown in Fig. 3A is remark-
ably similar to the observed storm-track density changes, which also 
indicate a decrease (increase) in track density over the western 
(central and eastern) Atlantic basin (12, 72). While some of the spatially 
inhomogeneous observed trends have been attributed to observing 
system changes, e.g., increased observations in the central and 

eastern Atlantic (15), the fact that future projections from HighResMIP 
(Fig. 3, A and C) show a similar trend indicates that anthropo-
genic effects are also playing a major role in generating the unequal 
spatial structure of the trends in Atlantic TC activity. This agreement 
between model and observations is remarkable given that historical 
trends in the tropical SST show a La Niña–like pattern, whereas most 
models show an El Niño–like trend (73). However, other external 
forcings, such as the diminishing effect of anthropogenic aerosols 
and volcanic activity, could also play a fundamental role in the 

Fig. 2. Direct simulation of Atlantic TC activity changes. Changes in interannual variability as measured by the projected (2020–2049) to observed (1970–2019) period 
variance ratio from June to November for (A) ACE and (B) TC number from 24 models from the High-Resolution Model Intercomparison Project (HighResMIP). The analysis 
is separated into models that accurately depict the observed trends (red) and those that depict the incorrect observed trend (blue). The ensemble mean for all models is 
shown at the far right in black along with confidence intervals at a 95% level based on a bootstrapping technique (see Materials and Methods). The multimodel mean for 
those models depicting the correct (incorrect) historical trend is also shown in the far right in red (blue).
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observed TC activity changes (9). This dipole structure of trends is 
consistent with some previous studies, which attribute the eastward 
shift to changes in genesis location and background flow (74–76). In 
contrast, other studies have suggested an overall decrease in future 
track density (77). The seemingly conflicting results could be model 
dependent and/or tracking method dependent, further motivating 
the use of multimodel ensembles and different detection and track-
ing algorithms.

In contrast to the inhomogeneous changes in mean TC activity, 
projected changes in the interannual variability of TC track density 
show a more consistent increase throughout the Atlantic basin 
(Fig. 3B), with a notable increase from Cabo Verde to the southeast 
coast of the U.S. Changes in the variance of TC genesis (Fig. 3D) 
show a spatially inhomogeneous pattern, with a projected in-
crease (decrease) in variability over the eastern Atlantic and MDR 
(Caribbean). This suggests that increased variability of TC genesis over 
the MDR leads to increased TC track density north of the MDR. The 
MDR is a net exporter of ACE and much of the ACE that originates 
in the MDR ends north of it (Fig. 3, A and B). A recent study found 
that ENSO tends to modulate TC genesis and track density pre-
dominantly in the southern Gulf of Mexico and Caribbean Sea with 
little to no impact in the rest of the basin (78). Thus, the reduced 
TC activity over the Caribbean Sea shown in Fig. 3 is consistent 
with a projected El Niño–like mean state in the Pacific (55, 79–83), 
which should decrease TC activity in the Caribbean Sea (78).

Projected changes in large scale drivers—CMIP6
Seasonal Atlantic TC activity (i.e., ACE) is largely modulated by the 
SST difference between the tropical Atlantic and the tropical Pacific 

(49–54). This is illustrated in fig. S3, which shows the correlation 
between seasonal averaged ACE for the Atlantic basin and SSTAs 
over each grid-point highlighting the well-known warm MDR–
cold tropical Pacific pattern that enhances TC activity in the Atlantic 
basin (53, 54). Thus, an important question is if the current and 
projected future increases in TC variance (Figs. 1 to 3) are driven by 
enhanced interbasin SST variability and/or large-scale environ-
ment factors known to modulate TC activity, like vertical wind 
shear and mid-level atmospheric stability (84). Thus, we assess fu-
ture changes in SST variability in CMIP6 between the present cli-
mate and future projections using the Shared Socio-economic 
Pathway SSP5-8.5 emissions scenario (list of models in table S7). 
Before looking at future changes, we computed the variance ratio 
for recent period (1995–2023) relative to the earlier period (1970–
1994) for SSTs, vertical wind shear, and atmospheric stability (i.e., 
lifted index) averaged over the MDR from observations and CMIP6 
simulations (Fig. 4). Note that all three environmental parameters 
show a variance increase. For example, 12 of 15 CMIP6 models 
show an increase in the vertical wind shear variance (Fig. 4A) and 
atmospheric stability variance (Fig. 4B) and 11 of 15 models suggest 
an increase in SST variance (Fig. 4C) and denoted by a variance 
ratio that is greater than one.

Regarding future changes in large-scale environmental factors, a 
recent study argues that El Niño events are projected to develop ear-
lier and more strongly during boreal summer and fall, with enhanced 
overall interannual variability in CMIP6 (55). Tropical North Atlantic 
SST variability is also projected to increase (56), driven by an intensi-
fication of the ENSO-forced Pacific-North American pattern and as-
sociated surface heat flux anomalies. Future changes in large-scale 

Fig. 3. Spatial distribution of projected changes in TC activity. Changes in track density (top) and genesis location (bottom) per 5° latitude-longitude box per year from 
the HighResMIP simulations measured by the differences between the projected (2020–2049) minus the observed (1970–2019) period. (A) Mean track density changes 
and (B) interannual track density variability changes. Similarly, (C and D) show mean genesis and interannual genesis variability. Stipples indicate statistical significance 
at the 95% confidence level based on a bootstrapping technique (see Materials and Methods).
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atmospheric variability responsible for TC activity are described in 
Fig. 5 by the variance ratio, i.e., 21C versus 20C interannual variance, 
for (A) 20- to 850-hPa vertical wind shear, (B) atmospheric stability as 
measured by the 500 hPa lifted index, and (C) SST. There are projected 
increases in interannual variability in all three variables over the 
Atlantic MDR. The increases are consistent with the projected in-
creases in variance for ACE and TC number (Fig. 2). Note that 13 of 
15 CMIP6 models show a variance increase of vertical wind shear and 
atmospheric stability and all models suggest a variance increase in 
SSTs (fig. S9), suggesting a future enhancement of interannual vari-
ability of Atlantic wind shear, atmospheric stability, and SST. In addi-
tion to changes in interannual variability, the projected increase in the 
mean surface temperature would translate into a larger atmospheric 
response to interbasin SST variations (71).

Attribution analysis of extreme TC activity
Attribution analysis of TC activity is carried out here using the pro-
jected changes in direct TC representation from HighResMIP mod-
els. This analysis is further validated with an interbasin SST proxy 

for ACE (51). This SST proxy is derived from the linear regression 
between observed ACE and the interbasin SSTA difference (i.e., 
Atlantic MDR minus Niño 3 SSTAs) chosen for the CMIP6 simula-
tions because the coarse resolutions of these models do not allow 
accurate representations of TC development and evolution (85). It is 
worth noting that the interbasin SST proxy for ACE used here has a 
correlation of 0.67 with the observed Atlantic ACE for the historical 
period of 1970 to 2023, and is conceptually very similar to the tradi-
tional Atlantic MDR minus tropical SSTAs (83, 86). However, the 
relationship between global SST and ACE does not necessarily need 
to be stationary under external forcing. For example, the projected 
shift to more intense storms (6) have been attributed to not just 
changes in the SSTs but to changes in the upper troposphere tem-
perature (87–89). In addition, the recent downward trend in TC 
outflow temperature associated with a cooler tropical tropospheric 
layer is a major contributor to the observed increase in potential 
intensity of TCs (87, 88). With that said, the SST-ACE relationship is 

Fig. 4. Observed and modeled changes in interannual variability. Variance ra-
tio of (A) 200 to 850 hPa vertical wind shear, (B) 500 hPa lifted index, and (C) sea 
surface temperature (SST) averaged over the Atlantic main development region 
(MDR, 10°N-20°N and 60°W-20°W). Positive (negative) values indicate increase (de-
crease) interannual variability for the recent period (1995–2023) relative to the ear-
lier period (1970–1994). The ensemble mean of the Coupled Model Intercomparison 
Project version 6 (CMIP6) models is shown by a red bar. The observed variance ratio 
is also shown by a black box for comparison.

Fig. 5. Interannual variability changes of selected large-scale TC environment 
fields. The projected to historical period variance ratio from June to November for 
(A) 200 to 850 hPa vertical wind shear, (B) 500 hPa lifted index, and (C) SST. Positive 
(negative) values indicate projected increase (decrease) interannual variability. 
Stipples indicate statistical significance at the 95% confidence level based on a 
bootstrapping technique (see Materials and Methods).
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still present in the future projections period (fig. S10, 2020–2049), 
so we choose the interbasin SST proxy for ACE to investigate future 
projection from the CMIP6 simulations.

The definition of the time of emergence (ToE) involves defining 
a signal-to-noise ratio. Here, we take the external forcing signal as 
the ensemble mean (i.e., forced component) versus the ensemble 
spread (i.e., natural variability) in fully coupled CMIP6 simula-
tions. The influence of anthropogenic forcing on the near-future 
distribution of extreme TC activity, including the tercile frequency 
of active, neutral, and inactive Atlantic TC seasons, is assessed in 
Fig. 6. The definition of what constitutes an active season is based 
on NOAA/Climate Prediction Center seasonal ACE thresholds 
(i.e., below-, near-, and above-average activity). Figure 6A shows 
the time series of likelihood of seasonal ACE derived from the in-
terbasin SST proxy from CMIP6 for each tercile category. Since the 
threshold for each tercile is drawn from the 1920 to 2000 PDF, the 
expected value for each tercile is one-thirds for the 20th century. To 
assess changes in the likelihood of each tercile (e.g., nonstationari-
ty), the thresholds are fixed at the 20th century levels throughout 
the 1920 to 2100 period. Note that there are expected increases in the 
numbers of years with above- and below-normal TC activity for the 
Atlantic basin, together with a reduction in the number of near-
normal activity seasons. This suggests a broadening of the spec-
trum distribution of TC activity. Figure 6A can also be used to 
estimate the ToE of anthropogenic signals with regard to TC activ-
ity. Note that by the 2020s, the probability of near-normal seasons 
is notably lower than the expected 33% tercile probability, increas-
ing the probabilities of above- and below-normal seasons. This sug-
gests that anthropogenic forcing is driving enhanced interannual 
variability in TC activity. One limitation of using the ensemble 
mean of CMIP6 models to define the external forcing is that cli-
mate models tend to have common biases due to similar parametri-
zation (90); thus, the ensemble mean could still contain some portion 
of model biases. In addition, multidecadal climate variability has 
been shown to consists of a superposition of low-frequency signals, 
with both natural and external sources (91, 92). For example, volca-
nic and anthropogenic aerosols may have contributed to the recent 
AMO cycles via a reduction (increase) of surface solar radiation and 
thus cooling (warming) of SSTs (93, 94). Thus, separating the natural 
and all external components requires dedicated single-forcing ex-
periments, which is beyond the scope of this work.

The increase in active and inactive seasons and reduction of near-
normal seasons are further corroborated by direct simulations of 
TCs from HighResMIP (Fig. 6B). For this analysis, the tercile thresh-
olds are determined from standardized anomalies; z = (x − μ)/σ, 
where x is the ACE value for each model, and μ and σ are the his-
torical period (1970–2019) mean and SD of ACE for the specific 
model. This approach facilitates comparison among models with 
distinct TC representations (fig. S6). For each of the 87 ensembles 
(table S4), the instances for above-, near-, and below-normal terciles 
are counted for the future period (2020–2049) using the historical 
period thresholds. A PDF is then computed using all 87 ensembles 
and shown in Fig. 6B. The probabilities of above-, near-, and below-
normal TC seasons are: 38 ± 1.8%, 26.7 ± 2.0%, and 35.4 ± 1.8%, all 
significantly different than the expected 33.3%. The enhanced above-
 and below-normal terciles and reduced near-normal tercile are con-
sistent with the results based on the interbasin SST proxy (Fig. 6A).

Projected changes in the PDF of seasonal TC activity have large 
socioeconomic implications, especially if the high-impact (i.e., 

above-normal) tercile is projected to increase in frequency. Thus, 
it is worth investigating the role of anthropogenic effects on high-
impact extreme seasons such as 2005. Note that this is not an at-
tempt to attribute the very active seasons of 2005 to natural versus 
anthropogenic causes, but rather to assess the likelihood that an 
extreme season with large ACE values was anthropogenically 
caused. That is, without anthropogenic forcing, the event would 
not have occurred. Hence, we rely on causal counterfactual theory 
(95, 96) applied to present and future simulations of TC activity 

Fig. 6. Attribution analysis of future changes in Atlantic TC activity. (A) Tempo-
ral evolution of a 30-year running average number of above-normal (red), near-
normal (green), and below-normal (blue) TC seasons based on interbasin 
SST-derived ACE from the CMIP6 simulations. The boxes denote the ensemble 
spread. The light-colored horizontal line denotes the expected equal (one-thirds) 
probability for terciles. The year labels on the abscissa correspond to the central 
year of the 30-year window. For example, the year 2030 indicates the period span-
ning 2016 to 2045. ACE thresholds denoting above-, near-, and below-normal TC 
activity follow those of the NOAA/Climate Prediction Center and are noted in the 
legend. (B) PDF of probabilities of above (red), neutral (green), and below normal 
(blue) Atlantic hurricane activity derived from HighResMIP simulated TC activity for 
the 21st century (2020–2049) period. The mean (μ) plus/minus the 95% confidence 
intervals based on a bootstrapping technique are also shown (see Materials and 
Methods). (C) Probability of necessary causation (PN) shown by red line plus/minus 
95% confidence interval whiskers as a function of high ACE thresholds (abscissa), 
where the vertical dashed line indicates ACE = 245·104 kt2 corresponding to the 
2005 season. Horizontal colored bins show different PN categorizations according 
to the Intergovernmental Panel on Climate Change terminology.
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from HighResMIP (see Materials and Methods) and compute the 
probability of necessary causation (PN) for different high ACE 
thresholds above the mean (Fig. 6C). If anthropogenic effects are a 
necessary condition for more active TC seasons, then PN > 0. 
Note that PN = 76% (likely; i.e., the intercept between the vertical 
dashed line and the red curve) for ACE = 245 × 104 kt2 (i.e., a sea-
son similar to 2005). From Eq. 2, a PN = 76% (with a range of 50 
to 89%) suggests that the probability of occurrence of a season 
similar to 2005 will increase around 4 times in the 2020 to 2049 
period relative to the historical period (1970–2019). This suggests 
that anthropogenic effects will likely be a necessary condition for 
such an extreme ACE season to occur. Thus, we might expect ex-
tremely high TC activity (ACE > 210 × 104 kt2; or when the red 
curve in Fig. 6C exceeds the probability P = ⅔, or above likely cat-
egory, based on categorizations according to Intergovernmental Panel 
on Climate Change terminology) to become more common in the 
future under anthropogenic effects.

DISCUSSION
Most of the literature assesses the role of anthropogenic forcing 
from a mean activity change perspective (TC frequency, track, in-
tensity, etc.). This work demonstrates that interannual variability 
changes have played a dominant role in determining the occurrence 
of both active and inactive TC seasons observed since around 1995. 
Also, increases in the mean and interannual variability have had a 
compounding (opposing) effect on the occurrence of active (inac-
tive) TC seasons regarding ACE and TC count. It is also shown, us-
ing future projections from high-resolution HighResMIP model 
simulations and an ACE-proxy derived from CMIP6 models, that 
interannual variability of Atlantic TC activity is projected to in-
crease as measured by ACE (36 ± 8%) and TC count (19 ± 11%). 
Both of these increases are significant relative to the variability of 
the historical period, and they will likely lead to more hyperactive 
hurricane seasons. In comparison, projected changes in the mean 
activity are much smaller with a projected mean ACE increase of 
13 ± 8% and an insignificant 1 ± 3% change in mean TC number. 
These changes are the result of increased variability in TC relevant 
fields, such as vertical wind shear and atmospheric stability over the 
tropical North Atlantic basin in boreal summer, and are a response 
to enhanced interbasin Atlantic-Pacific SST variations. The en-
hanced future variability increase is near-homogeneously through-
out the Atlantic basin. However, the mean changes show a dipole 
structure with an increased trend over the eastern and central Atlantic 
and a reduced trend over the Caribbean, which is similar to the 
observed trend (12). This suggests that the spatial inhomogeneities 
in TC activity trends cannot be attributed solely to observing system 
changes. Instead, changes in fundamental physical processes are un-
derway due to anthropogenic effects, and these should be explored 
in future studies.

A future intensification in the variability of Atlantic TC activity 
would result in more extreme swings between active and inactive 
hurricane seasons, with important implications for seasonal out-
looks. Enhanced variability is often associated with reduced predic-
tion skill from enhanced weather noise (e.g., potential predictability, 
reduced signal-to-noise ratio, etc.). However, the projected increase 
in TC variance was shown here to be well explained by changes in 
known predictors (e.g., Niño 3-MDR interbasin SST index). This could 
lead to improved probabilistic seasonal outlooks for TC activity. In 

addition, intraseasonal variability associated with the “Madden-Julian 
oscillation is also projected to change in the future (97), which could 
have implications for subseasonal Atlantic TC activity. However, a 
comprehensive signal-to-noise analysis is required to separate the 
relative contributions of predicted versus unpredicted causes of en-
hanced TC variability, as well as their natural and/or external sources, 
such an analysis is beyond the scope of this work.

Last, the current NOAA/Climate Prediction Center seasonal out-
looks for Atlantic TC activity rely on fixed thresholds for determining 
active (i.e., ACE > 130% of the 1951–2020 median; https://cpc.ncep.
noaa.gov/products/outlooks/Background.html) and inactive seasons 
(i.e., ACE < 75% of the 1951–2020 median). Our results emphasize 
the need to reconcile the nonstationary behavior of the ACE PDF 
with current operational definitions of TC activity to account for the 
projected increase in extreme swings between active and inactive 
hurricane seasons.

MATERIALS AND METHODS
Observational data
TC data were obtained from the National Hurricane Center’s second-
generation hurricane database (HURDAT2) (98). To measure TC 
activity in the Atlantic basin, we use the ACE index (units of 104 kt2), 
which is an integral measure of the number, strength, and duration 
of storms in a season (99). ACE is computed for each calendar year 
by summing the squared maximum wind velocity every 6 hours for 
each tropical and subtropical cyclone that is of tropical storm or hur-
ricane strength (sustained winds greater than 34 kts). Out of season, 
TCs were included in the observed analysis; however, their contri-
bution to seasonal ACE is minimal. Short-lived storms (<2 days) were 
excluded from the analysis as there has been a recent increase since 
around the year 2000, a fact that has been shown to be artificially 
created by the inhomogeneity in the observing systems and improve-
ments in observational capabilities (15, 16).

Observed SSTs are obtained from the Hadley Centre HadSSTv2 
product at a 1° horizontal resolution for the period of 1900 to 2023 
(100). Atmospheric variables (e.g., vertical profiles of temperature 
and winds) are obtained from monthly means of the European Cen-
ter for Medium-Range Weather Forecast-5 Reanalysis (ERA5) (101) 
for the period of 1982 to 2023.

Model simulation—Direct TC detection from 
CMIP6 HighResMIP
Interannual variability of TC activity in climate models is diagnosed 
from direct simulations of TCs from the CMIP6 HighResMIP (see 
table S4 for list of models), which provides a multimodel, multiresolu-
tion ensemble protocol (63). The HighResMIPs are run under histori-
cal forcing for the period of 1950 to 2014 and future projections for 
the 2015 to 2050 with most of the forcing fields being the same as those 
used in the CMIP6 simulations (102). Aerosol properties are mod-
eled by combining a climatological background natural aerosol with 
time-varying volcanic and time-varying anthropogenic aerosols from 
the Max Planck Institute Aerosol Climatology. These simulations only 
include interannual variations in volcanic and anthropogenic aero-
sols and exclude interannual variations in natural aerosols (65). For 
the future projections, greenhouse gases and aerosol concentrations 
from the high-end emission scenario of the Shared Socioeconomic 
Pathways (SSP585) were prescribed (64). The HighResMIP includes 
fully coupled and SST-prescribed runs. For the SST-prescribed runs, all 
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uncoupled models use the same observed SST and sea-ice forcing for 
the 1950 to 2014 period from the HadISST2 dataset at a 0.25° resolu-
tion. For the future projection period (2014–2050), the SST and sea-ice 
forcings are derived from the CMIP6 SSP585 greenhouse forcing sim-
ulations. The coupled models simulate their own SSTs (65).

TC detection in the HighResMIP
TCs are detected by two different tracking algorithms: TRACK (103) 
and TempestExtremes (104). The two tracking algorithms use differ-
ent approaches; TRACK detects TCs by identifying vorticity features 
and accounting for warm core criteria, whereas TempestExtremes 
identifies TCs using sea-level pressure and warm-core criteria. Since 
the two trackers are fundamentally different (68), we use both to add 
confidence to the results. The increased horizontal resolution of the 
HighResMIP models has been shown to improve TC frequency and 
ACE representation in the North Atlantic, as well as the distribution 
of TC genesis, track, and intensity (68). The spatial pattern of TC 
transit per year is well represented, with spatial correlations r > 0.9 
for both tracking algorithms; however, with considerably smaller 
amplitude than observed (figs. S7 and S8), the observed ACE-SST 
relationship is also well capture (fig. S3). Some of the deficiencies in 
representing TCs in HighResMIP include a lower TC frequency in 
the North Atlantic compared to observations, excessive TC activity 
in the Southern Hemisphere, and difficulty in simulating strong (cat-
egories 4 or 5) hurricanes (68). However, strong hurricane simula-
tions are beyond the expected capabilities of these models (105).

Model simulations—Large scale analysis from CMIP6
Analysis of large-scale relevant fields for TC activity, such as vertical 
wind shear, humidity, and SST are taken from the CMIP6 model 
archive (https://esgf-node.llnl.gov/projects/cmip6/, see table S7 for 
list of models). The analysis comprises 15 CMIP6 models under his-
torical radiative forcing (i.e., during 1920–2000). The future projec-
tion also comprises 15 CMIP6 models for the 2015 to 2100 period 
under the SSP585. Each model/ensemble member has a distinct cli-
mate trajectory due to differences in the atmospheric initial condi-
tions. Differences among ensemble members from CMIP6 include 
interannual variability and model biases.

Interannual variability definition in observations and 
CMIP6 models
Interannual anomalies are defined by first subtracting the previous 
30-year running mean climatology to remove trends due to anthro-
pogenic effects. For example, the SST climatology for July 2000 is the 
averaged July SST from 1971 to 2000. This method defines anoma-
lies relative to their contemporary climatology, and it is used at the 
National Oceanic and Atmospheric Administration’s Climate Pre-
diction Center to define anomalous climate events (e.g., ENSO). 
Since each CMIP6 model has its own physics and thus its own bi-
ases, we remove a 30-year running mean climatology derived for 
each CMIP6 model similar to what is done for the observational 
period. We tested the robustness of the 30-year running mean cli-
matology by computing a new climatology at 5-year interval from 
20- to 40-year running mean and the results are robust and inde-
pendent of the choice of time window.

SGS distribution
Statistical modeling of TC-relevant fields using a SGS approach brings 
several benefits. First, it provides a method to quantify the influence 

of climate shifts under Gaussian and non-Gaussian assumptions. Sec-
ond, it enables an investigation of how changes in the climate influ-
ence the statistical moments of TC-related variables and their PDFs, 
including the hypothesized increase in interannual variability due to 
enhanced ENSO and tropical North Atlantic SST variance. Changes 
in the PDF of TC activity (e.g., ACE, TC count) are modeled by an 
SGS distribution (62, 63). The SGS distribution of a variable X is de-
fined in Eq. 1, where E, g, b, and N are parameters obtained from the 
statistical moments of X following the method of moments (62).

The SGS distribution accounts for non-Gaussian (i.e., nonzero 
skewness and kurtosis) characteristics of a variable, where the Gaussian 
distribution is a subset of the SGS distribution in the limit that 
parameter E approaches zero. For example, the PDFs of observed 
ACE and TC count are positively skewed, with heavier tails to the 
right of the mean (Fig. 1, E and F). Since the distribution parameters 
are a function of the statistical moments of variable X (62), then the 
sample variance, skewness, and kurtosis of a variable X are used to 
construct the SGS PDF. For example, to investigate changes in inter-
annual variability only, the parameters of the SGS distributions are 
trained to account for changes in the variance while leaving all other 
statistical moments fixed. A goodness-of-fit analysis based on χ2 and 
Kolmogorov-Smirnov tests show that the SGS is a good fit for the 
ACE and TC number data, whereas more traditional distributions 
(i.e., Poisson distributions) are not; this is because TC data are highly 
skewed and non-Gaussian (see table S2 and fig. S2 for details).

Attribution analysis
Causal counterfactual theory is used to assess the probability that an 
event E would not have occurred in the absence of a cause (C), 
where event E is defined as extremely active TC seasons measured 
by high ACE and C is ACC. A probability of necessary causation 
(PN) can be constructed to measure the fraction of extreme events 
attributed to ACC (95), defined as

where P0 is the probability of an event occurring in the counterfac-
tual world (i.e., without anthropogenic effects), and P1 is the proba-
bility of that same event occurring in the factual world (i.e., with 
anthropogenic effects). P0 and P1 are obtained from the SGS PDF 
distribution (Eq. 1) applied to historical (1970–2019) and projected 
(2020–2049) TC activity, respectively, simulated by 87 HighResMIP 
models/ensembles. PN ranges from zero to one and indicates wheth-
er anthropogenic effects are a necessary condition for the extreme 
ACE to occur, i.e., whether the extreme event would occur in the 
absence of ACC.

Statistical significance test—Bootstrapping technique
A Monte Carlo bootstrapping method is used to determine confi-
dence intervals by subsampling the dataset. All analyses presented 
are obtained by randomly selecting r samples out of n observations 
with replacement (Eq. 3). This is done 500 times to build a distribu-
tion of composites and assign 95th percentile confidence levels.

SGS (X)=
1

N

[

(

EX+ g
)2
+ b2

]−[1+(1∕E2)]
exp

[

2g

E2b

(

EX+ g

b

) ]

(1)

PN(C→E) =max

{

1−
P0

P1

, 0

}

(2)

(n r)=
n!

r!(n− r)!
=possible combinations (3)
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